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Abstract 1. Bayesian Autoencoder Hessian approximation
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AEs and VAEs produce none or poorly calibrated n

uncertainty estimates making it hard to evaluate if
learned representations are stable and reliable.
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1. We present a Bayesian autoencoder for
unsupervised representation learning, which is
trained using a novel variational lower-bound of the
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au’_cogncode_r gvidenc.e. | Model overv?ew. We learn a distribution over parameters such ’Fhat we can sample encoders and Current appro;(r;frT;:ilcz)zs scales quadratically \:Ci:;tisrlr?:lge resolution, where as our approximation
2. Th|§ s max|m|zgd using Monte Carlo EM with a decoders. This allow us to compute the empirical mean and variance in both the latent space and scales linearly. This enables us to scale to large images.

variational distribution that takes the shape of a the output space.

Laplace approximation. . . . _
3. We develop a new Hessian approximation that 2. lterative Learning (Monte Carlo EM) Out-of-Distribution Detection

scales linearly with data size allowing us to model
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lterative training procedure. Given a distribution g over parameters, and a linearized function f, Our online training procedure produces reliable uncertainties in both latent and output space,
compute first and second-order derivatives to update the distribution on parameters. which are useful for out-of-distribution detection.

3. Scaling Laplace Approximation to Large Images Semi Supervised Learning
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= — - — AE Arched Eyebrows | 0.50 0.52 0.55 0.60
M -0 £ MC-AE Attractive 0.52 050 049 0.53
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B H#0 <o — LAE (online) Wearing Lipstick | 0.52  0.49 0.50 0.54

<« JTMJ, . Heavy Makeup 045 052 049 0.56

<« JTMJ, Overall 0.73 0.72 0.73 0.74
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(@) Block diagona (b) Eixact diagona (¢) Approx. diagona (4) Mixed diagona In semi-supervised learning we have plentiful of unlabelled data (on which we train our model),
Comparison of Hessian approximation methods. Common approximations (a-b) scale and only few labelled data points. We can augment these with a stochastic feature
quadratically with the output resolution. Our proposed approximate and mixed diagonal Hessians representation, which leads to improve classification accuracy.

(c—d) scale linearly with the resolution. This is essential for scaling the LAE to large images.

Data Imputation & Generative Capabilities

Ve L(fo) = Jo fg - VIL - Jo fo The VAE suffers from mode collapse, and does not capture the ambiguity in the input data. In
contrast the LAE (online) correctly finds the multiple modes the input data could origin from.
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