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Ssummary

Deep learning has emerged as a powerful paradigm to create accurate 3D maps for
autonomous agents. This 3D awareness enable robots to navigate and interact with
the world. However, the deep learning methods to create such maps often come
without any notion of uncertainties, which can have catastrophic consequences if
wrong predictions are propagated through the system.

This thesis explores the de-facto pipeline for 3D reconstruction and how uncertain-
ties can be incorporated into each step to ensure the safe deployment of autonomous
agents.

More specifically, we present a new mental model for understanding uncertain-
ties in deep learning, namely learned versus deduced uncertainties, that originates
in pragmatic considerations and offers practical guidelines on how to model uncer-
tainties. The thesis chronologically makes improvements to the four steps of the
reconstruction pipeline: 1. Retrieval. We present a Bayesian training procedure to
deduce uncertainties for stochastic representations that reduces the risk of silent er-
rors in image retrieval. 2. Structure from Motion. We propose a detector-agnostic
method to estimate the uncertainties of deep keypoint detectors and show that the
deduced uncertainties improve camera localization accuracy. 3. Multiview Stereo.
We present a factorization of dynamic 3D maps that is memory efficient and enable
fast training and rendering. Further, we present a probabilistic model to distill a
learned 3D prior of local shapes into the reconstruction process. 4. 3D reasoning.
Last, we present a novel framework to interact with and manipulate 3D maps in a
semantically consistent manner.
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1.1  Motivation

Opening our eyes and perceiving the world around us is a fundamental ability that
most of us often take for granted. At a glance, we capture a myriad of visual in-
formation, effortlessly discerning objects, people, and their movements. For instance,
consider the image pair in Figure 1.1, we see that the church stands behind a building,
individuals traverse in one direction, and the camera moves in the opposite direction.
Such observations highlight the remarkable precision and spatial awareness of our
perception. Its evolutionary importance stems from its accuracy at long distances
which has prevented humans from getting too close to dangerous animals and nav-
igating around obstacles [Pal99]. When we perceive the world, we store a spatial
three-dimensional (3D) representation of it. Evidence of this internal 3D represen-
tation has been found in psychological studies, e.g. consider the objects displayed in
Figure 1.2. Our perception system sees a cylinder, a circle, and a cube, layering the
objects and completing their shapes, thus implicitly constructing a 3D representation
of the scene from only the visible parts of the objects [Pal99]. Storing a 3D canon-
ical representation is statistical and computationally much more efficient compared
to recomputing and reprocessing all the information when we move around [Pal99].
Therefore, it is reasonable to assume that if we want robots to navigate the world,
we need 3D-aware models and representations.

Figure 1.1: We can effortlessly perceive the 3D geometry of the scene and the move-
ment of the camera and the pedestrians.
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Figure 1.2: Visual completion behind partly occluding objects. We perceive the left

figure as a square, a rectangle, and a circle, although, we only see the visible regions
displayed in the right figure.

In recent years, deep learning has emerged as a powerful paradigm, demonstrating
remarkable accomplishments across various domains [Mil+20; Rom+21; FC20]. Also,
within the field of computer vision, deep learning has exhibited significant potential
for creating accurate 3D maps. Leveraging deep learning for 3D representations
has enabled many applications, including robotic navigation and augmented reality.
These methods are currently deployed without or with a limited notion of uncertainty.
However, deep learning methods are not perfect. Wrong predictions will happen.
And if these errors are propagated through the reconstruction pipeline, they can
have devastating consequences. One example was when a perception system in an
autonomous vehicle predicted the side of a white truck to be a bright sky. This led
to the first fatal accident in an autonomous vehicle [Depl7]. Had the system been
able to assign higher uncertainty to its erroneous prediction, the incident might have
been avoided.

This thesis aims to push the boundaries of modeling uncertainties in deep learning
and improve the state-of-the-art in 3D reconstruction. By addressing these challenges,
this thesis seeks to enhance the reliability, efficiency, and accuracy of deep learning-
based spatial perception systems. Overall, this research represents a step towards
advancing the field of computer vision, enhancing the capabilities of spatial percep-
tion systems, and paving the way for safer and more reliable applications such as
autonomous vehicles, robotics, and mixed reality.

1.2 Approach

Humans and machines alike only observe a 2D projection of the 3D world. Recon-
structing the 3D scene from a single 2D image is an ill-posed problem. However, the
human perception system gives evidence that it is feasible to solve efficiently and
reliably. We know that the human perception system uses many cues to inform us
about the underlying 3D scenes, ranging from multiview stereo, shape from shading,
and shape and scale from object semantics [Pal99].

The computer vision community has studied these cues for decades and devel-
oped sophisticated methods to infer the 3D geometry of scenes and objects. The
most common and well-studied practical pipeline for 3D reconstruction is illustrated
in Figure 1.3 and consists of first retrieving the images of an object or scene to recon-
struct, then running Structure from Motion (SfM) to estimate the camera poses, and
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Retrieve images SfM Mvs 3D reasoning

Figure 1.3: From 2D images to 3D. Given a collection of unstructured images, the
first step is to retrieve the images to use for the 3D reconstruction. Then Structure
from Motion (SfM) is run to find get posed images and the sparse 3D geometry. We
can obtain a dense 3D reconstruction with Multiview Stereo (MVS). Once we have
a dense 3D reconstruction, we can edit the scene, e.g. how would the Trevi fountain
look if the water was red?

finally using Multi-View Stereo (MVS) to obtain a dense 3D reconstruction on which
3D reasoning can be performed.

This thesis contributes to each step of the pipeline, focusing on advancing the state-
of-the-art in dense 3D reconstruction, while modeling uncertainties at each stage of
the pipeline. This research seeks to enhance our understanding of uncertainty in 3D
reconstruction and contribute to the development of more accurate and trustworthy
spatial perception systems.

1.3 Contributions

To summarise, the contributions of this thesis are as follows

e We develop a Bayesian algorithm to model uncertainties in representation learn-
ing and image retrieval.

e We demonstrate how to quantify uncertainties for visual localization.
e We present an efficient method to represent dynamic 3D reconstructions.

e We show how generative priors can be incorporated into the reconstruction
pipeline.

e Finally, we present a method for disentangling and manipulating 3D scenes.

1.4 Co-Authored Papers

Some extracts from this thesis appear in the following co-authored publications and
preprints. Chapter 2 is extended from:

 Laplacian Autoencoders for Learning Stochastic Representations [Mia+22] (NeurIPS

2022)
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Chapter 3 is adapted from:

o Mapillary Street-Level Sequences: A Dataset for Lifelong Place Recognition
[War+20] (CVPR, 2020)

e Bayesian Metric Learning for Uncertainty Quantification in Image Retrieval
[War+23a] (NeurIPS 2023)

Chapter 4 builds on:

o DAC: Detector-Agnostic Spatial Covariances for Deep Local Features [TWC23]
(preprint 2023)

Chapter 5 is adapted from

o Nerfbusters: Removing Ghostly Artifacts from Casually Captured NeRFs [War+23b)
(ICCV 2023)

o K-Planes: Explicit Radiance Fields in Space, Time, and Appearance [Fri+23]
(CVPR 2023)

Lastly, Chapter 6 summarizes

o Volumetric Disentanglement for 3D Scene Manipulation [Ben+22] (preprint
2022)

The following papers were written during the Ph.D., but are not included in the thesis

o Learning to Taste: A Multimodal Wine Dataset [Ben+23] (NeurIPS 2023)
o Searching for Structure in Unfalsifiable Claims [Chr+22] (HCOMP 2022)

o Bayesian Triplet Loss: Uncertainty Quantification in Image Retrieval [War+21]
(ICCV 2021)

e Danish Airs and Grounds: A dataset for aerial-to-street-level place recognition
and localization [Val4-22] (IROS 2022)

o Probabilistic Spatial Transformer Networks [Sch+22] (UAI 2022)

o Laplacian Segmentation Networks: Improved Epistemic Uncertainty from Spa-
tial Aleatoric Uncertainty [Zep+23] (preprint 2023)

o Self-Supervised Depth Completion for Active Stereo [War—+22] (ICRA 2022)

o SparseFormer: Attention-based Depth Completion Network [WRL22] (CV4ARVR
2022)



1.5 Thesis Structure 5

1.5 Thesis Structure

Chapter 2 presents the de-facto division of uncertainties, e.g. epistemic and aleatoric,
and proposes an alternative framework based on learned versus deduced uncertain-
ties. The rest of the thesis follows the four steps illustrated in Figure 1.3. Chapter 3
shows that deduced uncertainties are useful for out-of-distribution examples in repre-
sentation learning and image retrieval. Chapter 4 that deduced uncertainties provide
reliable uncertainties for visual localization. Chapter 5 presents work on incorpo-
rating generative priors into multi-view stereo pipelines and modeling dynamic 3D
reconstructions. Lastly, Chapter 6 proposes a framework to interact with and manip-
ulate implicit 3D reconstructions.






CHAPTER 2

Uncertainties in Deep
Learning

The uncertainty of a model’s predictions arises from either aleatoric (data) uncertainty
or epistemic (model) uncertainty [DDO09]. This is currently the de-facto mental model
for understanding uncertainties in deep learning [KG17]. The epistemic uncertainty
arises because the model’s parameters are estimated from a finite amount of data,
and there is inherent uncertainty about the optimal values for these parameters. In
contrast, aleatoric uncertainty stems from the inherent randomness in the data gen-
eration process. It represents the uncertainty that remains even if we have a perfect
model with precise knowledge of its parameters.

Although this mental model is nice-to-have, in practice, the disentanglement of
the types of uncertainties is challenging for neural networks [Wim+23; VM22]. More-
over, we can often only evaluate the predictive uncertainty (e.g. the union of the
two uncertainties). Hence, the disentanglement has limited practical value. This
chapter challenges the de-facto division of uncertainties and proposes an alternative
division into learned versus deduced uncertainties. This division offers more practical
guidelines on how to model uncertainties in neural networks. We further present a
novel online training process of the Laplace Approximation (LA) and an efficient Hes-
sian approximation that enables us to estimate reliable uncertainties in large neural
networks with high dimensional outputs.

This chapter contains parts from Laplacian Autoencoders for Learning Stochastic
Representations [Mia+22], Bayesian Metric Learning for Uncertainty Quantification
in Image Retrieval [War+23a], and pytorch-laplace [WM23]. Not all experiments,
results, and related works are presented to keep the text shorter.

2.1 Epistemic and Aleatoric Uncertainties

Epistemic Uncertainty. In Bayesian deep learning, epistemic uncertainty is often
addressed by placing a prior distribution over the model’s parameters and updating
this distribution based on the observed data to obtain the posterior distribution. The
posterior distribution captures our updated knowledge about the parameters given
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the data. Mathematically, let’s denote the model’s parameters as 6 and the data as
D. The epistemic uncertainty can be represented by the posterior distribution p(6|D)
over the model parameters 6 conditioned on the observed data D.

Aleatoric Uncertainty. The aleatoric uncertainty can be captured by introducing
a probability distribution over the target values y for each input data point x. This
means that instead of predicting a single value, the model provides a probability
distribution over possible target values. The aleatoric uncertainty can be represented
by the conditional distribution p(y|z), which captures the variability in the target
variable y given the input data x.

Predictive Uncertainty. In practice, a deep learning model may exhibit both
epistemic and aleatoric uncertainties simultaneously. This is often referred to as
predictive uncertainty, and it can be modeled using Bayesian neural networks that
incorporate both epistemic and aleatoric uncertainty components. The predictive
distribution can be expressed as follows:

plylz, D) = / plyle, 0)p(6, D)db (2.1)

where p(y|x,0) represents the aleatoric uncertainty in the predictions, and p(8|D)
represents the epistemic uncertainty in the model’s parameters. For deep networks,
it is hard to disentangle the epistemic and aleatoric parts [Wim+23; VM22], and
we can only evaluate the predictive uncertainty. Therefore, in practice, the division
primarily serves as a mental model for uncertainties with limited practical value.

2.2 Learned and Deduced Uncertainties

Here, we advocate for an alternative division of uncertainty quantification into learned
versus deduced uncertainties. This division bears parallels to the aleatoric/epistemic
one, however, gives rise to a different mental model. It arises from more pragmatic
and practical considerations, namely what do we need the uncertainties for? For
example, a common approach to learning uncertainties is by parameterizing the pre-
dictive distribution pg(y|z) ~ N (ug(z), o2(x)), where a neural network predicts both
the mean and variance estimates. The variance network O'g usually works well for
in-distribution data, where the network operates within the range of the training
data. However, it faces challenges when dealing with out-of-distribution data, as the
neural network must extrapolate beyond its training data [HG16; VM22]. Neural
networks are generally poor at extrapolation, leading to difficulties in assigning high
uncertainties to out-of-distribution data accurately.

An alternative to using a neural network for predicting uncertainties is to deduce
uncertainties. One such approach is deep ensembles [LPB17], where multiple networks
are trained with different random seed initialization. Predictive uncertainties are then
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obtained by forwarding the data through each model and computing the mean and
variance of their predictions. Deep ensembles provide a more reliable approach to
quantifying uncertainties for out-of-distribution (OOD) data because they do not rely
on the network’s ability to extrapolate. The disadvantage of methods that deduce
uncertainties, such as deep ensembles, is that they rely on sampling, which adds a
computational overhead.

In short, this division of uncertainties tells us that learned uncertainties are
useful for in-distribution (ID) data and deduced uncertainties are useful for out-of-
distribution (OOD) data. The advantage of this mental model is that it does not
give any false promises on disentangling the origin of the predictive uncertainty.

2.3 Laplace Approximation (Posthoc)

The Laplace approximation [Mac92] is a practical method to deduce the uncertainty
of a neural network. It assumes that the weights of a neural network follow a Gaussian
distribution (Gaussian weight-posterior), which is estimated using the curvature of
the loss landscape.

—logP(9)

0* *
0 “log P(6)

Figure 2.1: Intuition of Laplace Approximation. Illustrates two loss landscapes;
one with a steep valley (left) and one more flat (right), their local minima (star), and
a second-order Taylor expansion around the minimas.

Intuition. Figure 2.1 shows the loss (or negative log-likelihood) for two one-parameter
neural networks. After training, the parameters converge to a local minimum of the
loss, illustrated by the blue star 6*. If a parameter is in a steep valley, changing it a
little bit will increase the loss a lot. This means that we are fairly certain about the
specific value of the parameter. On the other hand, if a parameter is in a flat valley,
changing it a little bit will not increase the loss a lot. Thus, we are uncertain about
the specific value of the parameter.

The steepness of the valley is determined by the second derivative of the loss,
also called the Hessian. Thus, the inverse of the Hessian determines the uncertainty
of the parameters. In the following, we will derive the Laplace approximation and
show that it corresponds to assuming a Gaussian distribution over the parameters
(Gaussian weight-posterior).
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Derivations. The Laplace approximation (LA) can be applied for every loss func-
tion £ that can be interpreted as an unnormalized log-posterior by performing a
second-order Taylor expansion around a chosen weight vector 6*:

1
logp(0| D) = L*+(0 ") VL +5 (00" V2" (8- 0)+0 (|0 - 0"|°) (22)
Imposing the unnormalized log-posterior to be a second-order polynomial is equiv-
alent to assuming the posterior to be Gaussian.
If 0* is the maximum a posteriori (MAP) estimate the gradient is zero, such that
the first-order term in the Taylor expansion vanishes, which yields a weight posterior
as:

PO D) =N (616, (VEL(O:D) + 0,2, 1)) (2.3)

where A denotes the Gaussian distribution. The advantage of post-hoc LA is that
the training procedure does not change, and already trained neural networks can
be made Bayesian. In practice, however, we empirically observe post-hoc LA to be
unstable [War+23a]. The instability stems from curvature differences between the
local minima through stochastic optimization.

2.4 Laplace Approximation (Online)

We propose an online LA [Mia+22] that improves on this instability by marginalizing
the LA during training with Monte Carlo EM. This helps the training recover a
solution #* where the Hessian reflects the loss landscape. Specifically, at each step
t during training, we keep in memory a Gaussian distribution on the parameters
q'(0) = N(0]6,, H o, 1). The parameters are updated through an expected gradient step

9t+1 = 915 + A]Eg,\,qt [Vgﬁ(@, D)] (24.)
and a discounted Laplace update
Hy, , = (1 —a)Hg, + V3L(0; D), (2.5)

where a describes an exponential moving average, similar to momentum-like training.
The initialization follows the isotropic prior ¢°(6) = N(]0, 02;.,T), mimicking how
neural networks are commonly initialized.

Figure 2.2 compares a varational autoencoder [KW13] (VAE) with a post-hoc and
online Laplacian autoencoder [Mia+22] (LAE). The LAE is the Laplace approximated
posterior of an AE. We find that (1) the VAE does not exhibit good uncertainties
in the latent space. This is because the uncertainties are learned, and thus, do not
extrapolate far away from the training data distribution. The LAEs yield reliable
uncertainties in the latent space, even far away from the training data. We find (2)
that the post-hoc LAE does not yield good uncertainties in the output space, whereas
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Figure 2.2: 2D latent representation of MNIST overlaid a heatmap that describes the
decoder uncertainty (yellow /blue indicates a low /high variance of the reconstructions).
To the right of the latent spaces, we show the mean and variance of a reconstructed
image (yellow indicates high values). (a) The VAE learns to estimate high variance
for low-level image features such as edges but fails at extrapolating uncertainties away
from training data. (b) Applying post-hoc Laplace to the AE setup shows much better
extrapolating capabilities, but fails in estimating calibrated uncertainties in output
space. (c¢) Our online, sampling-based optimization of a Laplacian autoencoder (LAE)
gives well-behaved uncertainties in both latent and output space.

the online LAE is better calibrated, providing reasonable uncertainties in the output
space, depicted by the high variance at the top and bottom of the “1” character
capturing the variability in which people write.

2.5 Scaling the Hessian to Large Images

The largest obstacle to applying LA in practice stems from the Hessian matrix. This
matrix has a quadratic memory complexity in the number of network parameters,
which very quickly exceeds the capabilities of available hardware. To counter this
issue, several approximations have been proposed [RBB18; BRB17; MG15| that im-
prove the scaling w.r.t. to the number of parameters. The currently most efficient
Hessian implementations [DKH20; Dax+21] builds on the generalized Gauss-Newton
(GGN) approximation of the Hessian

Van L(fo(x)) ~ Jow fo (z)' VoL (y) - Jow fo (x), (2.6)

for a single layer [, which neglects second order derivatives of f w.r.t. the parameters.
Besides, the computational benefits of this approximation, previous works on LA
[Dax+21] rely on GGN to ensure that the Hessian is always semi-negative definite.
Albeit relying on first-order derivates, the layer-block-diagonal GGN, which as-
sumes that layers are independent of each other, scales quadratically with the output
dimension of the considered neural network f. This lack of scaling is particularly
detrimental for convolutional layers as these have low parameter counts, but poten-
tially very high output dimensions. Expanding Jy) fo(z) with the chain rule, one
realizes that the Jacobian can be computed as a function of the Jacobian of the next
layer. Figure 2.3 illustrate that an intermediate quantity M, which is initialised as
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Viﬁ(y), can be efficiently backpropagated through multiplication with the Jacobian
w.r.t. input of each layer. This process leads to a block diagonal approximation of
the Hessian as illustrated in Figure 2.3(a). However, diagonal blocks are generally too
large to store and invert. To combat this, each block can be further approximated by
its exact diagonal [Dax+21] as depicted in Figure 2.3(b). This scales linearly w.r.t.
parameters, but still scales quadratically w.r.t. the output resolution (Table 2.1).

APPROXIMATIONS | MEMORY TIME

Block diag. O(R2, +W2) O(R:+W2)
KFAC O(R? + W)  O(R2+ W)
Exact diag. O(R2, + W) O(R2+Wy)
Approx. diag. (ours) | O(Ry +Ws)  O(Rs + Ws)
Mixed diag. (ours) O(Rpm +Ws)  O(Rs + Wy)

Table 2.1: Memory & time complexity of Hessian approximations. For
an L-layer network, let R,,=max;__r|z?|, R,=>",|z"V|, R?=Y",[z®|?, and
W,=>",16V|. Only our approximation scales linearly with both the output reso-
lution and parameters.

m M#0
B H#£0
« JI'MmJ,
« JIMJ,

(a) Block diagonal (b) Exact diagonal (c) Approx. diagonal (d) Mixed diagonal

Figure 2.3: Comparison of Hessian approximation methods. Common ap-
proximations (a—b) scale quadratically with the output resolution. Our proposed
approximate and mixed diagonal Hessians (c—d) scale linearly with the resolution.
This is essential for scaling the LAE to large images.

To scale our Hessian to high-dimensional data, we propose to approximate the
diagonal of the Hessian rather than relying on exact computations. We achieve this
by only backpropagating a diagonal form of M as illustrated in Figure 2.3(c). This
assumes that features from the same layer are uncorrelated and consequently have
linear complexity in both time and memory with respect to the output dimension
(Table 2.1). This makes it viable for models with large output dimensions.
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Figure 2.4: Memory & time usage of Hessian approximations. The exact and
KFAC scales poorly with the image resolution. In contrast, our proposed approximate
diagonal Hessian scales linearly.

Hessian ‘ —logp(x) | MSE |
KFAC 9683.9 £+ 2455.0 121.6 +24.5
Exact 283.3 £+ 88.6 27.14+0.9
Approx | 232.0+65.5 26.6 + 0.6
Exact* 25.8+0.2 25.74+0.2
Approx* | 25.9+ 0.4 258+ 0.4

Table 2.2: Ounline training (indicated by
*) outperforms post-hoc LA. The ap-
proximate diagonal has similar perfor-
Figure 2.5: Mean and variance of 100 mance to the exact diagonal for both

sampled NN. post-hoc and online LA.

(a) Post-hoc (b) Online

We can further tailor this approximation to the autoencoder setting by leveraging
the bottleneck architecture. We note that the quadratic scaling of the exact diagonal
Hessian is less of an issue in the layers near the bottleneck than in the layers closer
to the output space. We can therefore dynamically switch between our approximate
diagonal and the exact one, depending on the feature dimension. This lessens the
approximation error while remaining tractable in practice.

2.6 Experiments

For practical applications, training time and memory usage of the Hessian approx-
imation must be kept low. We here show that the proposed approximate diagonal
Hessian is sufficient and even outperforms other approximations when combined with
our online training.

Figure 2.4 show the time and memory requirement for different approximation
methods as a function of input size for a 5-layer convolutional network that preserves
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channel and input dimension. As baselines we use efficient implementations of the
exact and KFAC approximation [Dax+21; DKH20]. The exact diagonal approxima-
tion run out of memory for an ~ 36 x 36 x 3 image on a 11 Gb NVIDIA GeForce
GTX 1080 Ti. In contrast, our approximate diagonal Hessian scales linearly with the
resolution, which is especially beneficial for convolutional layers.

Table 2.2 shows that the exact or approximate Hessian diagonal has similar per-
formance for both post-hoc and online training. Using post-hoc LA results in good
mean reconstructions (low MSE), but each sampled NN does not give good recon-
structions (low log p(z)). Using our online training procedure results in a much higher
log-likelihood. This indicates that every sampled NN predicts good reconstructions.

Figure 2.5 shows the latent representation, mean, and variance of the reconstruc-
tions with the KFAC, exact and approximate diagonal for both post-hoc and online
setup. Note that the online training makes the uncertainties better fitted, both in
latent and data space. These well-fitted uncertainties have several practical down-
stream applications, such as out-of-distribution detection and semi-supervised learn-
ing [Mia+22].

aﬂ ' ‘ E
%

Figure 2.6: Sample reconstructions on CelebA. The top row shows the mean
reconstruction and the bottom row shows the variance of the reconstructed images.

Figure 2.6 shows the mean and variance of five reconstructed images. The online
LAE produces well-calibrated uncertainties in the output space and scales to large
images.

2.7 Summary

This chapter challenges the de-facto mental model of uncertainties in the deep learn-
ing community, proposes an alternative division of uncertainties into learned versus
deduced uncertainties, and presents an efficient method for deducing uncertainties in
neural networks. We briefly summarise the main conclusions.
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Aleatoric and Epistemic uncertainties provides a nice-to-have mental model
of where uncertainties arise, however, the disentanglement is hard and therefore of
limited practical value.

Learned versus deduced uncertainties provides a more practical mental
model, highlighting that deduced uncertainties are good for out-of-distribution (OOD)
whereas learned are more suited for in-distribution (ID) data.

Laplace approximation (LA) is a method to deduce uncertainties. We propose
an online training procedure that improves the calibration and stability of the learned
weight posterior. Further, we presented an efficient Hessian approximation that allow
us to scale the LA to large neural networks with high output dimensions.
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CHAPTER 3

Bayesian Image
Retrieval

Recall that the first step of the 3D reconstruction pipeline is to retrieve the images
useful for the reconstruction. Depending on the object or scene we wish to reconstruct,
different meta-data can be used to find the relevant images, e.g. GPS, tags, text
descriptions, etc.

In this chapter, we consider the extreme case, where we only have access to images
for the retrieval process. Thus, given a query image, we wish to retrieve “similar” im-
ages from a large database. “Similar” depends on the application, but could be same
bird species, same human face, or the same place. The task is often solved by learn-
ing representations that are close when images are “similar”. This can be achieved
with metric learning that seeks data representations where similar observations are
near and dissimilar ones are far. This elegantly allows for building retrieval systems
with simple nearest-neighbor search. Such systems easily cope with a large number of
classes and new classes can organically be added without retraining. While these re-
trieval systems show impressive performance, they quickly, and with no raised alarms,
deteriorate with out-of-distribution data [SJ19]. In particular, in safety-critical ap-
plications, the lack of uncertainty estimation is a concern as retrieval errors may
propagate unnoticed through the system, resulting in erroneous and possibly danger-
ous decisions. This chapter presents the Mapillary Street-Level Sequences, a large
dataset for training retrieval systems, and then extends the Laplace approximation
to deduce uncertainties for metric learning systems.

This chapter contains parts from Mapillary Street-Level Sequences: A Dataset
for Lifelong Place Recognition [War+20] and Bayesian Metric Learning for Uncer-
tainty Quantification in Image Retrieval [War+23a]. Not all experiments, results,
and related works are presented to keep the text shorter.

3.1 Visual Place Recognition

Visual place recognition consists of recognizing the geographical location of a place
based only on image data. The place recognition task is often cast as a retrieval
problem. Given a query image, we wish to find the images from the same geographical
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Query

.
-

Positive

Negative

Figure 3.1: Shows a query image that has 6 positive images from the Copenhagen
database. In this example, we use a 25 meter as the threshold to define positive
images.

location as the query image. Figure 3.1 illustrates the images from the same location
(positives) and images from other locations (negatives).

The retrieval problem is solved by building a low dimensional, place-descriptor
for both query and database images, and for each query image retrieve the closest n
database images [Low+16; Zaf+19]. The goal is to build a robust place descriptor that
efficiently represents an exact geographical location based only on image information.

To push the state-of-the-art in lifelong place recognition, we present Mapillary
Street-Level Sequences (MSLS), the largest dataset for place recognition to date, with
the widest variety of perceptual changes and the broadest geographical spread. MSLS
comprises 1.6 million images from Mapillary® platform, and covers a wide range of
appearance changes, such as different seasons, changing weather conditions, varying
illumination at different times of the day, dynamic objects such as moving pedestrians
or cars, structural modifications such as roadworks or architectural work, camera
intrinsic, and viewpoints as illustrated in Figure 3.2. Figure 3.3 shows that the
dataset spans six continents, including diverse cities like Kampala, Zurich, Amman,
and Bangkok.

We benchmark a multitude of state-of-the-art models, and find that the state-
of-the-art place descriptors, despite impressive performance, fail without any raised
alarms, when the query images are of low quality, ambigous or out of distribution

1www.mapillary.com
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Figure 3.2: Mapillary SLS pairs showing day/night, weather, seasonal, structural,
viewpoint, and domain changes. Each column shows images from the same place
that are recorded at different dates.

Figure 3.3: Mapillary SLS contains imagery from 30 major cities around the world; red
stands for training cities and blue for test cities. See two samples from San Francisco
and Tokyo with challenging appearance changes due to dynamic and illumination
differences.

Figure 3.4: Examples of uncertain queries. State-of-the-art networks that does
model uncertainties, which can lead to silent a failure.

as exemplified in Figure 3.4. In these situations, we would expect the model to as-
sociate high uncertainty with its prediction, however, state-of-the-art models provide
no notion of uncertainty.
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3.2 Stochastic Embeddings

Instead of modelling place-descriptors as low-dimensional deterministic embeddings,
we can model them as stochastic ones. This allow us to estimate the uncertainties
of queries and retrieved images. We show that the online Laplace Approximation
described in the previous chapter can be extended to metric learning and provide
reliable stochastic embeddings. r z

Figure 3.5 illustrate our Bayesian map- »
ping from image to latent space. We esti- 1 g
mate the weight posterior of the embedding { fo
network fy such that we can sample data em-

beddings to propagate uncertainty through
the decision process. The embedding net- Figure 3.5: Model overview. We
work is parametrized by 6 € © and trained learn a distribution over parameters,
with the contrastive loss [HSOG] The net- such that we embed an image through
work maps an image x € X := RFWC to sampled encoders fy to points z; (red
an embedding z € Z, which is restricted to dots) in a latent space Z. We reduce
be on a Z-dimensional unit sphere Z := S%. these latent samples to a single mea-
This Spherical normalization is common in re- sure of uncertainty by estimating the

trieval to obtain faster retrieval and a slight parameters of a von Mises-Fisher dis-
performance boost [Ara+16; RTC18]. tribution.

0 ~ N(0,03)

The probabilistic contrastive likelihood. The Laplace Approximation (LA) ex-
pects the loss function to be a log-posterior, that is log-likelihood plus log-prior. A
simple choice of the log-prior is ||@||3 (weight decay). Next, we show that the con-
trastive loss [HS06] has a probabilistic interpretation and is a negative log-likelihood
on the spherical space. Here, we only stretch the proof, and refer to [War+23a] for
more details. We define the attractive term P~ (z|x,0) ~ N*(z|fp(x), k) and the
repelling term P~ (z|x,0) ~ N(z| — fo(x), k) as Von Mises-Fisher distributions on
the latent spherical space, where the concentration parameter x > 0. The product of
these two likelihoods yields a contrastive likelihood, which is valid on the spherical
space, and its negative log-likelihood is equivalent to the contrastive loss. Thus, we
can use the LA with the constrastive loss.

Hessian of the contrastive loss. Both post-hoc and online LA require the Hessian
of the contrastive loss V2L.on(6; D). The Hessian is commonly approximated with the
Generalized Gauss-Newton (GGN) approximation [FH97; Dax+21; DKH20; Det+21].
The GGN decomposes the loss into £ = g o f, where g is usually chosen as the loss
function and f the model function, and only f is linearized [KHB19].

However, in our case, this decomposition is non-trivial. Recall that the last layer
of our network is an 5 normalization layer, which projects embeddings onto a hyper-
sphere. This normalization layer can either be viewed as part of the model f (lin-
earized normalization layer) or part of the loss g (non-linearized normalization layer).



3.2 Stochastic Embeddings 21

The former can be interpreted as using the Fuclidean distance and the latter as using
the Arccos distance for the contrastive loss. These two share the zero- and first-order
terms for normalized embeddings but not the second-order derivatives due to the
GGN linearization. The Euclidean interpretation leads to simpler derivatives and
interpretations, and we will therefore use it for our derivations. We emphasize that
the Arccos is theoretically a more accurate approximation because the f>-layer is not
linearized. The GGN matrix for contrastive loss with the Fuclidean interpretation is
given by

Vileon(0;T)=> Hf =Y Hf+ > HY

ijer ijez, ijeT, )
GGN ij T 1 -1 ij i -1 1 ] S
~ E:Je (-1 1)J9+§:J0 (T1.1) ¢
ijeT, —— ijeT, ——
=1, =H,

where Jgj = (Jgfg(l’i)T, J9f9($j)T)T, with Jy is the Jacobian wrt. the parameters
and H, and H,, are the Hessians of the contrastive loss wrt. the model output for
positive and negative pairs. The first sum runs over positive pairs and the second sum
runs over negative pairs within the margin. Negative pairs outside the margin do not
contribute to the Hessian, and can therefore be ignored to reduce the computational
load. The eigenvalues of the Hessian wrt. to the output are (0,2) and (—2,0) for
the positive H,, and negative H,, terms, so we are not guaranteed to have a positive
semidefinite Hessian, Hy. We propose three solutions to ensure a positive semidefinite
Hessian to avoid covariances with negative eigenvalues.

Ensuring positive definite covariance matrix. We do not want to be restricted
in the choice of the prior except to have non-zero precision, so we must ensure that
V2Leon(0%; D) is positive semidefinite. Differently from the standard convex losses,
this is not ensured by the GGN approximation [IKB21]. Our main insight is that we
can ensure a positive semidefinite Hessian Hy by only manipulating the Hessians H,
and H, in (3.1).

1. Positive: The repelling term is ignored, such that only positive pairs contribute
to the Hessian.

%:<i ﬁ)» fﬂ:(g 8) (3:2)

2. Fized: The cross derivatives are ignored.

m=(y 1) m=(% 1) (33

3. Full: Positive semidefiniteness is ensured with ReLU, max(0, V2L qon(0; D)), on
the Hessian of the loss wrt. the parameters.

H, = (_1 _1 ) H, = (_1 _1 ) (3.4)
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The positive approximation is in- ’ """"""" * e ----- e : T
spired by [SJ19], which only uses ‘o, , % e Y few . %
positive pairs to train an uncer- i or v HETE v i-or
tainty module. The gradient ar- . * ) * ;
rows in Figure 3.6a illustrate that (4 positives o) Fived " © Fal

negative pairs are neglected when
computing the Hessian of the con-
trastive loss. The fized approxima-
tion considers one data point at a
time, assuming the other one is fixed.
Thus, given a pair of data points,
this can be interpreted as first mov-
ing one data point, and then the sec-
ond (rather than both at the same
time). Figure 3.6b illustrate this idea when all points except a are fixed. Lastly,
we propose the full Hessian of the contrastive loss (Figure 3.6¢) and ensure positive
semidefiniteness by computing the ReLLU of the diagonal Hessian. This approximation
can equivalently be interpreted as a projection into the space of positive semidefinite
(PSD) matrices. In practice, the Hessian scales quadratically in memory wrt. the
number of parameters. To mitigate this, we approximate this Hessian by its diagonal
and only apply the LA on the last layer [LDS89; DL90]. We experimentally find that
the fized approximation yields the best performance (Section 3.3).

Figure 3.6: Hessian approximations. To en-
sure a positive semidefinite Hessian approxima-
tion we propose three approximations. In (a)
only the positives p contribute to the Hessian
as the negatives n are ignored. In (b) we con-
sider one point at a time, e.g., only the anchor
a contributes. In (c¢) we consider all interac-
tions.

Hard negative mining. Most pairs, namely the negatives outside the margin, do
not contribute to the Hessian, so it is wasteful to compute their Hessian. Therefore,
we use hard negative mining [MBL20] to only compute the Hessian of pairs that have
non-zero Hessian, i.e. the negative sample lie within the margin (illustrated with the
dotted line in Figure 3.6).

3.3 Experiments

We benchmark our method against strong probabilistic retrieval models. Probabilis-
tic Face Embeddings (PFE) [SJ19] and Hedge Image Embedding (HIB) [Oh+18]
perform amortized inference and thus estimate the mean and variance of latent obser-
vation. We also compare against MC Dropout [GG16] and Deep Ensemble [LPB17],
two approximate Bayesian methods, which have successfully been applied in image
retrieval [Tah+19a; Tah+19b).

We compare the models’ predictive performance with the recall (recall@k) and
mean average precision (mAPQk) among the k nearest neighbors [War+21; MBL20;
Ara+16]. We evaluate the models’ abilities to interpolate and extrapolate uncertainties
by measuring the Area Under the Sparsification Curve (AUSC), Expected Calibration
Error (ECE) on in-distribution (ID) data, the Area Under Receiver Operator Curve
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((a)) Out-of-distribution detection. ((b)) Predictive performance.

Figure 3.7: Summary of experimental results. LAM consistently outperforms
existing methods on O0D detection, as measured by AUROC, and matches or sur-
passes in predictive performance measured by mAP@k. Error bars show one std
across five runs.

(AUROC), and Area Under Precision-Recall Curve (AUPRC) on out-of-distribution
(OoD) data.

Experimental Summary. We first summarize our experimental results. Across
five datasets, three network architectures, and three different sizes of the latent space
(ranging from 3 to 2048), we find that LAM has well-calibrated uncertainties, re-
liably detects OOD examples, and achieves state-of-the-art predictive performance.
Figure 3.7(a) shows that the uncertainties from online LAM reliably identify OoD
examples. Online LAM outperforms other Bayesian methods, such as post-hoc LAM
and MC dropout, on this task, which in turn clearly improves upon amortized meth-
ods that rely on a neural network to extrapolate uncertainties. Figure 3.7(b) shows
that LAM consistently matches or outperforms existing image retrieval methods in
terms of predictive performance. We find that the fixed Hessian approximation with
the Arccos distance performs the best, especially on higher dimensional data.

A.blation: ) POSitin’ defi- Typle 3.1: Ablation on Hessian approximation
nite covariance matrl).c. We  and GGN decomposition. Online LA with the
experimentally study which methogyeq approximation and Arccos distance performs

to ensure a positive semidefi- pest FError bars show one std. across five runs.
nite Hessian has the best per-

formance measured in both pre- mAP@5 1 AUROC?t AUSC 1
dictive performance (mAP@5) Euclidean fix ~ 0.70 £ 0.0 0.57 £ 0.25 0.44 + 0.01
and uncertainty quantification g PROGeREY TR0 020 0% (koo
T uclidean ru . . . . . .
(AUROC’ AUSC) § Arccos fix 0.69 £ 0.0 0.53 £ 0.20 0.46 + 0.02
We found that all meth- *  Arccos pos 0.70 £0.0  0.29 £0.11 0.48 £+ 0.01
ods perform similarly on simple Arccos full 0.69 + 0.0  0.55 + 0.18 0.45 + 0.01
datasets and low dimensional Euclidean fix  0.63 = 0.01 0.77 + 0.04 0.31 = 0.02
o Euclidean pos  0.70 £0.0  0.38 £ 0.10 0.47 % 0.01
hyper-spheres, but the fixed ap- 2 Buclidean full  0.67 £ 0.01  0.59 + 0.04 0.42 + 0.01
proximation with Arccos dis- & Arccos fix 0.71 £ 0.0  0.78 £ 0.18 0.50 + 0.03

Arccos pos 0.70 £ 0.0 0.23 £ 0.03 0.46 £ 0.00
Arccos full 0.71 +£ 0.0 0.70 £ 0.12 0.51 £+ 0.01
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Table 3.2: Results on MSLS. LAM yields state-of-the-art uncertainties and matches
the predictive performance of deterministic trained models.

Validation Set Challenge Set
Ra@lt Ra@5t RQ@10t Mas5t MaQ1l0t ‘ AUSC?T | R@Q1t R@5t R@l0t M@5t M@10t ‘ AUSCT
Deterministic 0.77 0.88 0.90 0.61 0.56 — 0.58 0.74 0.78 0.45 0.43 —
MC Dropout 0.75 0.87 0.87 0.59 0.54 0.77 0.55 0.71 0.76 0.43 0.41 0.57
PFE 0.77 0.88 0.90 0.61 0.56 0.73 0.58 0.74 0.78 0.45 0.44 0.57

LAM (post-hoc) | 0.76 0.86 0.89 0.60 0.55 0.74 0.58 0.74 0.78 0.45 0.44 0.59
LAM (online) 0.76 0.87 0.90 0.60 0.56 0.77 0.57 0.74 0.78 0.45 0.43 0.63
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Figure 3.8: Images with lowest and highest variance for PFE, post-hoc LAM,
and online LAM across MSLS validation set. LAM reliably associates high uncertainty
to images that are blurry, are captured facing the pavement, or contain vegetation.
These images do not contain features that are descriptive of a specific place, making
them especially challenging to geographically locate.

tance performs better on more challenging datasets and higher dimensional hyper-
spheres.
We present results on one of these

more challenging datasets, namely the 08 e

LFW [Hua+07] face recognition dataset with —— MC Dropout

the CUB200 [Wah+11] bird dataset as an :©_0.7 ——LAM Pasthnc

Oo0D dataset. We use a ResNet50 [He+16] 2 LAM Onling

with a GeM pooling layer [RTC18] and a 0.6

2048 dimensional embedding and diagonal,

last-layer LA [Dax+21]. 0 25 50 75 100
Table 3.2 shows that online LAM yields Filter Out Rate

state-of-the-art uncertainties for visual place

recognition measured with AUSC, while Figure 3.9: Sparsification curve.
matching the predictive performance of the Online and post-hoc LAM’s sparsifi-
alternative probabilistic and deterministic cation curves monotonically increase,
methods on both the MSLS validation and showing that they reliably associate
the challenge set. Figure 3.9 shows the spar- higher uncertainty with harder obser-
sification curves on the challenge set. Both vations.
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online and post-hoc LAM have monotonically increasing sparsification curves, imply-
ing that when we remove the most uncertain observations, the predictive performance
increase. This illustrates that LAM produces reliable uncertainties for this challeng-
ing open-set retrieval task. Figure 3.8 shows the queries associated with the highest
and lowest uncertainty. LAM predicts high uncertainty to images that are blurry,
captured facing into the pavement, or contain mostly vegetation. These images do
not have features that are descriptive of a specific place, making them hard to ge-
ographically locate. Assigning high uncertainty to these images greatly reduces the
risk of silent failures during the retrieval process.

3.4 Summary

In this chapter, we explored image retrieval systems to recover images for our recon-
struction. The main conclusions are as follows:

Mapillary SLS. We presented a large place recognition dataset containing a
large array of visual appearance changes, such as day-night, view-point, structural,
and dynamic.

Silent failure. Existing state-of-the-art retrieval models do not assign uncertain-
ties to their predictions, which might lead to silent failures.

Stochastic Embeddings. The Laplace approximation can be adapted to metric
learning and can be used to deduce reliable uncertainty estimates for latent represen-
tations while matching the predictive performance of state-of-the-art systems. These
uncertainties reduce the risk of silent failures.
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CHAPTER 4

Uncertainties in Visual
Localization

The second step of the 3D reconstruction pipeline is to estimate the camera location
for each image. This is commonly done by simultaneously building a sparse 3D model
via keypoint matching and optimizing for the camera location [HZ04]. This is referred
to as structure from motion (SfM) and has been studied for decades in the computer
vision and robotics community [Ozy+17; HZ04]. Recently, deep learning-based key-
point detectors have demonstrated better performance than handcrafted detectors, es-
pecially being more robust to appearance variations, e.g. day-night changes [Sar+19;
Bar+22a; Zho+22; Xu+22]. However, the detected features a predicted without any
notion of uncertainties, leading to suboptimal performance for camera localization.
In this chapter, we explore a method to deduce uncertainties for any state-of-the-art
deep detector.

This chapter contains parts from DAC: Detector-Agnostic Spatial Covariances for
Deep Local Features [TWC23]. Not all experiments, results, and related works are
presented to keep the text shorter.
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4.1 Detector-Agnostic Covariances Estimates

Superpoint

D2Net

(a) Constant Covariance (b) Isotropic Covariance (c) Full Covariance

Figure 4.1: Detector-agnostic, post-hoc uncertainty for learned local-feature
detectors. State-of-the-art deep feature detectors, such as Superpoint [DMR18] and
D2Net [Dus+19], do not estimate the spatial uncertainty of their detections. This
corresponds to assuming constant covariances (a), which leads to suboptimal perfor-
mance. We propose two methods to model local features’ uncertainty: (b) a point-wise
isotropic covariance and (c) a structure-based full covariance estimate. We demon-
strate that modeling uncertainties lead to improved performance in downstream tasks
such as solving the perspective-n-point (PnP) problem and nonlinear optimizations.

Deep learned detectors and descriptors of local features (keypoints) are more ro-
bust to viewpoint and appearance changes than handcrafted ones [Sar+19; Bar+22a;
Zho+22; Xu+22]. However, these learned systems lack uncertainty modeling. This
absence of probabilistic formulation implicitly assumes constant spatial covariances
(see Figure 4.1a) for downstream geometric estimation tasks, leading to suboptimal
results.

We propose to model the spatial covariances of learned keypoints. We leverage
that learned detectors share a common design, where a CNN predicts a score map
from which keypoints are extracted. We propose two post-hoc covariance matrix
estimates of each keypoint location: (1) an isotropic estimator that directly uses
the regressed score, and (2) a theoretically-motivated estimator of the full spatial
covariance using the local structure tensor. Figure 4.1b-c shows exemplar keypoints
and their estimated covariances overlaid on their corresponding images and score
maps.
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4.2 Method

Our framework takes as input a H x W RGB image I, and outputs local features
with their spatial uncertainties. It is composed of (1) a pretrained feature detector
and (2) our novel detector-agnostic uncertainty module (Figure 4.2).

4.2.1 Overview

Pre-trained local-feature detector. Our framework is applicable to the vast
majority of learned detectors [Ver+15; Yi+16; DMR18; Rev+19; Dus+19; Luo+20;
TFT20; BM22]. These share a common design, using CNNs to predict a score map
S € RFIXEW followed by non-maximum suppression (NMS) to extract a sparse set
of local features. We leverage this standard design to make a detector-agnostic, post-
hoc uncertainty module that takes S as input and estimates the spatial uncertainty
of each detected local feature.

Detector-Agnostic Feature Uncertainties. More formally, we consider that the
location x; € R? of a local feature 4, detected in I, stems from perturbing its true
location x; = X; true + &i, With random noise &; € R2 whose distribution we want to
estimate. We follow the dominant model in computer vision [Kan96; Tri4+00; HZ04],
which uses second order statistics to describe the uncertainty:

E[§] =0, 2 :=Cov(&)=E[&&'], Vi. (4.1)

Thus, our goal is to quantify each covariance matriz 3;. To this end, we propose
two methods: (1) A point-wise and isotropic estimator (Section 4.2.2), and (2) a full
covariance estimator based on the local structure tensor (Section 4.2.3). Intuitively,
a peaky learned pattern around a detection will yield low spatial uncertainty, whereas
a flatter pattern will yield larger spatial uncertainty.

4.2.2 Point-wise Estimation
Our first estimator of the spatial uncertainty uses the regressed score of each keypoint

Skx;) T 0 1/8(x)

Ei = (42)

Figure 4.1 shows that this estimator yields isotropic predictions of uncertainty (equal
in all directions), so it only quantifies the relative scale regardless of the learned local
structure.

4.2.3 Structure Tensor

Quantification of local saliency motivates the use of the local structure tensor, C; €
R?*2 [HS+88]. Defining [V,.S;, V,Si] == 0S/0x|x, as the spatial gradient of S evalu-
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€5

4 500"

Figure 4.2: Method overview. We exploit the dominant approach in learned local-
feature detectors, represented by D, of regressing for each input image I, a map
of scores S := D(I), over which detections are done. We propose to quantify the
uncertainty of each detected location x; by a mapping U(S,x;) agnostic to D.

ated at x;, C; in its local window W; is given by

0S
Ci::ija :ij

JEW; Xj JEW;
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T s

. o . (43)

with w; € R" being the weight of pixel j, preferably defined by a Gaussian centered
at x; [SMS18].

Statistical interpretation. Under a Gaussian model of aleatoric uncertainty, com-
mon in deep learning [KG17; GDS20] and motivated by the principle of maximum
entropy [MBF09] of the local features’ scores, we can set up a parametric optimization
of t € R? which maximizes the likelihood, L(t; | S) with S := {S(x;) | x; € W}, of
the observations:

§(Xz) = S(Xl + ti) +¢&; , with g; ~ N(O, 0'2) s (44)

where S(x;) is the observed score, perturbed by the random noise ¢;, independently
affecting the rest of observations. Thus, the optimization is formulated as follows

. 1 ( (S(x;) = S(x; + ti))2> . (4.5)

202

~

Its solution, or mazimum-likelihood-estimation (MLE), is known a priori: t; = 0,
which is unbiased given our statistical model (4.4), and coherent with (4.1).

With these conditions, the inverse of the Fisher information matriz, I(f), evalu-
ated at the MLE, imposes a lower bound in the covariance matrix of the estimator
t; = 0, known as Cramer-Rao Lower Bound (CRLB) [HS+07]:

Var(t;) > Z(t,)"! . (4.6)
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Z(t) is defined as E[s; s;], being the variance of the log-likelihood derivative (known
as score) s; == dlog L(t; | S)/0t;, since E[s;] = 0 [HS+07]. In our case, it is given by

s= Y (dj _ S(x) = S(x; +ti) 9S(x; +ti>> . @7)

2 ot
(o)
X;EW; v

Due to the linearity of expectation and the independence of observations, E[d;dk] =
0, Vj # k. Thereby

()= E[d]d][;. - (4.8)
JEW;

Derivatives of (4.7) are applied to our deterministic model, thus they can go out of
the expectation. Evaluating them on t; = 0 leads to

T 0S(x;)
ox

Ti)= Y L B

ot  0Ox

X (4.9)
E[(S(x;) — S(x; + )], -

X3

Lastly, E[(S(x;) — S(x; + ti))2”£i = E[¢?] = o2 since E[g;] = 0, implying that our

7
Fisher information matrix is

T oS(x)
ox

I(Ei):% > asa(f) : (4.10)

x;EW;

x; x;

at the MLE, thus matching the local structure tensor (4.3) up to a scale factor related
to Var(e;) = o2, unknown a priori. Recalling the CRLB, although achievable only
asymptotically [Tri400; HS+07], it motivates 3; = Ci_1 as an up-to-scale covariance
matrix of each location x;.
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Figure 4.3: Matching accuracy vs uncertainty on HPatches [Bal+17|. For
each detector, we show the averaged MMA across all thresholds. This is done for 10
uniform ranges of uncertainty, ordered from lowest to highest (x-axis). Our covari-
ances correctly model less accurate matches, being the full-based approach (structure
tensor) the one showing greater sensitivity in D2Net, Key.Net, and R2D2.
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Figure 4.4: Evaluation in TUM-RGBD [Stu+12] and KITTI [Gei+13]. We
report the cumulative errors for the rotation and translation of the camera poses.
Practically all estimations converge to acceptable thresholds when leveraging our
2D full and 2D isotropic covariances. This also occurs when using 3D covariances
stemming from our 2D ones. Without our covariances, a significant percentage of
poses do not converge.

4.3 Experiments

Implementation details. In our experiments, we compute the structure tensor
independently of the learned detector: for each local feature i, spatial differentiation
at S(x;), Vj € W;, is done with Sobel filters. Integration in W; is done with a
7 x 7 window, the result of using an isotropic Gaussian filter with ¢ = 1 of cutoff fre-
quency 30. Throughout all the experiments, we evaluate and extract our covariances
using the state-of-the-art learned detectors: Key.Net [BM22], Superpoint [DMR18],
D2Net [Dus+19] and R2D2 [Rev+19).

4.3.1 Matching accuracy.

We first test the relation between our covariances with the accuracy of local-feature
matching. Intuitively, local features detected with higher uncertainty should relate
to less accurate matches, and vice versa. For this purpose, we consider the widely
adopted HPatches dataset [Bal+17].
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Evaluation protocol. We base our evaluation on the one of [Dus+19]. First, ex-
traction of local features and, in our case, covariance matrices of their locations is
performed for all images. In all sequences, pairwise matching is done between a refer-
ence image r and each remaining image ¢ with Mutual Nearest Neighbor (MNN). We
then compute the reprojection errors and their covariances with the homographies,
H, ., provided by the dataset:

e, =cart(}; — H; ,%,) , B, =I5 I + 2y, , (4.11)

where cart maps from homogeneous to Cartesian space, and J := Oe; ,/0x,, i.e. we
linearly propagate each 3y .

We quantify the uncertainty of the match with the biggest eigenvalue of the corre-
sponding X, .. Based on them, all matches are distributed in 10 uniform ranges from
lowest to highest uncertainty. To quantify the accuracy in matching at each range, we
use the mean matching accuracy error (MMA—average percentage of matches with a
corresponding value of ||e; .|| below a threshold). We use the thresholds of [Dus+19].
Finally, we compute the mean of all the MMA values at each range (dubbed MMA).

Results. Figure 4.3 shows MMA at each uncertainty range. Ranges are ordered
from lowest (1) to highest (10) uncertainty. As can be seen, it exists a direct re-
lation between accuracy and both full and isotropic covariance estimates. With
full covariances, lower uncertainty estimates imply higher accuracy. However, this
is not always the case when using isotropic covariances (see R2D2). Additionally,
MMA presents higher sensitivity to the uncertainty stemming from full covariances
on D2Net, Key.Net, and R2D2.

4.3.2 Geometry estimation

To test the influence of our covariances in 3D-geometry estimation, we follow the
evaluation of [Vak+21]. It evaluates common stages in geometric estimation pipelines
such as solving the perspective-n-point problem and motion-only bundle adjustment
(MO-BA). The data used consists in the sequences 00-02 of KITTI [Gei+13] and the
first three ‘freiburg 1’ RGB sequences of TUM-RGBD [Stu+12].

Evaluation protocol. KITTI is used with a temporal window of two left frames,
and three in TUM RGB-D (with a relative distance > 2.5 cm). For each frame, local
features and our 2D covariances are extracted. Pairwise matching is done with MNN.
To form feature tracks (set of 2D points corresponding to the same 3D point) we
use the track separation algorithm of [DSP20]. Matched features are triangulated
with GT camera poses and DLT algorithm [HZ04], and refined with 2D-covariance-
weighted (when using uncertainty) Levenberg-Marquardt (LM), producing also covari-
ances for 3D point coordinates. The next frame is used for evaluation. After matching
it to the reference images we obtain 2D-3D matches, which are used to localize the
new frame. When using no uncertainty, EPnP [LMF09] is chosen as the PnP solver.
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Otherwise, when leveraging our proposed 2D covariances, and optionally, the 3D co-
variances from LM, EPnPU [Vak+21]. Finally, the estimated camera pose is refined
with a covariance-weighted (when using uncertainty) MO-BA. For more details, we
refer the reader to [Vak+21].

To quantify the accuracy of the estimated camera poses, we use the absolute
rotation error e, = arccos(0.5 trace(R,. R — 1)), and the absolute translation error
et = ||ttrue — tl|, where Riypye, tirue is the GT pose and R, t is the estimated one.

Results. Figure 4.4 shows the cumulative error curves for each sequence. Prac-
tically all pose estimations obtained with methods leveraging our covariances, fall
under acceptable error thresholds, whereas the ones from the baseline do not.

4.4 Summary

We present detector-agnostic models for the spatial covariances of deep local features.
Specifically, we proposed two methods based on their learned score maps: one using
local-feature scores directly, and another theoretically-motivated method using local
structure tensors. Our experiments on KITTI and TUM show that our covariances
are well calibrated, significantly benefiting 3D-geometry estimation tasks, such as
estimating the camera location.



CHAPTER 5

Generative Models for
Multiview Stereo

The previous chapter presented a method to deduce uncertainties for local keypoints
and showed that these uncertainties can improve camera localization, thus providing
a collection of posed images. In this chapter, we present methods to build a dense
3D reconstruction from this collection of posed images. This process is referred to as
Multiview Stereo (MVS) and is a long-standing problem in computer vision [FH+15;
HZ04]. We focus on Neural Radiance Fields (NeRFs)[Mil+20], which have recently
shown impressive capabilities for 3D reconstructing. A NeRF maps a 3D point and
view-direction (z,y,z,¢,0) to a color and density value (RGB,o). It is optimized
with volume rendering [Max95; Mil4-20], minimizing the reconstruction loss between
rendered rays and captured pixels. This allows for novel-view synthesis and has easied
the 3D reconstruction process significantly. However, NeRFs are still especially chal-
lenged by dynamic scenes. Furthermore, since it is cast as a per-scene optimization
problem, NeRFs do not learn reusable 3D priors. This chapter, presents K-planes, an
efficient method to learn dynamic NeRFs, and Nerfbusters, a method to incorporate
learned 3D generative priors into the reconstruction process. These works aim to
enhance the quality of dynamic and in-the-wild 3D reconstructions.

This chapter contains parts from Nerfousters: Removing Ghostly Artifacts from
Casually Captured NeRFs [War+23b] and K-Planes: Explicit Radiance Fields in
Space, Time, and Appearance [Fri+23]. Not all experiments, results, and related
works are presented to keep the text shorter.

5.1 Dynamic 3D reconstructions

Recent interest in dynamic radiance fields demands representations of 4D volumes.
However, storing a 4D volume directly is prohibitively expensive due to the curse of
dimensionality. Several approaches have been proposed to factorize 3D volumes for
static radiance fields, but these do not easily extend to higher dimensional volumes.

We propose a factorization of 4D volumes that is simple, interpretable, compact,
and yields fast training and rendering. Specifically, we use six planes to represent a 4D
volume, where the first three represent space and the last three represent space-time
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Figure 5.1: Planar factorization of d-dimensional spaces. We propose a sim-
ple planar factorization for volumetric rendering that naturally extends to arbitrary-
dimensional spaces, and that scales gracefully with dimension in both optimization
time and model size. We show the advantages of our approach on 3D static volumes,
3D photo collections with varying appearances, and 4D dynamic videos.

changes, as illustrated in Figure 5.1(d). This decomposition of space and space-time
makes our model interpretable, i.e. dynamic objects are visible in the space-time
planes, whereas static objects only appear in the space planes. This interpretability
enables dimension-specific priors in time and space.

More generally, our approach yields a straightforward, prescriptive way to select
a factorization of any dimension with 2D planes. For a d-dimensional space, we
use k = (g) (“d-choose-27) k-planes, which represent every pair of dimensions — for
example, our model uses (3) = 6 hez-planes in 4D and reduces to (g) = 3 tri-planes in
3D. Choosing any other set of planes would entail either using more than & planes and
thus occupying unnecessary memory, or using fewer planes and thereby forfeiting the
ability to represent some potential interaction between two of the d dimensions. We
call our model K-planes; Figure 5.1 illustrates its natural application to both static
and dynamic scenes.

Most radiance field models entail some black-box components with their use of
MLPs. Instead, we seek a simple model whose functioning can be inspected and
understood. We find two design choices to be fundamental in allowing K-planes to
be a white-box model while maintaining reconstruction quality competitive with or
better than previous black-box models [Li422a; Pum+21]: (1) Features from our K-
planes are multiplied together rather than added, as was done in prior work [Cha+22;
Che+22], and (2) our linear feature decoder uses a learned basis for view-dependent
color, enabling greater adaptivity including the ability to model scenes with variable
appearance. We show that an MLP decoder can be replaced with this linear feature
decoder only when the planes are multiplied, suggesting that the former is involved
in both view-dependent color and determining spatial structure.

Our factorization of 4D volumes into 2D planes leads to a high compression level
without relying on MLPs, using 200 MB to represent a 4D volume whose direct
representation at the same resolution would require more than 300 GB, a compression
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Figure 5.2: Method overview. (a) Our K-planes representation factorizes 4D dy-
namic volumes into six planes, three for space and three for spatiotemporal variations.
To obtain the value of a 4D point q = (z,y, z,t), we first project the point into each
plane, in which we (b) do multiscale bilinear interpolation. (c¢) The interpolated val-
ues are multiplied and then concatenated over the S scales. (d) These features are
decoded either with a small MLP or our explicit linear decoder. (e) We follow the
standard volumetric rendering formula to predict ray color and density. The model
is optimized by (f) minimizing the reconstruction loss with simple regularization in
space and time.

rate of three orders of magnitude. Furthermore, despite not using any custom CUDA
kernels, K-planes trains orders of magnitude faster than prior implicit models and on
par with concurrent hybrid models.

In summary, we present the first white-box, interpretable model capable of rep-
resenting radiance fields in arbitrary dimensions, including static scenes, dynamic
scenes, and scenes with variable appearance. Our K-planes model achieves compet-
itive performance across reconstruction quality, model size, and optimization time
across these varied tasks, without any custom CUDA kernels. In the following sec-
tion, we describe the 4D instantiation of our K-planes factorization.

5.2 K-planes model

5.2.1 Hex-planes

The hex-planes factorization uses six planes. We refer to the space-only planes as P,
P,., and P, and the space-time planes as P,;, Py, and P;. Assuming symmetric
spatial and temporal resolution N for simplicity of illustration, each of these planes
has shape NxNxM, where M is the size of stored features that capture the density
and view-dependent color of the scene.

We obtain the features of a 4D coordinate q = (4, j, k, 7) by normalizing its entries
between [0, N) and projecting it onto these six planes

fl@)e = 7/’(PC>7TC(‘1))’ (5.1)
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where 7. projects g onto the ¢’th plane and 1 denotes bilinear interpolation of a point
into a regularly spaced 2D grid. We repeat (5.1) for each plane ¢ € C to obtain feature
vectors f(q).. We combine these features over the six planes using the Hadamard

product (elementwise multiplication) to produce a final feature vector of length M

f@) =1 f@e.

ceC

(5.2)

These features will be decoded into color and density using either a linear decoder or

an MLP, described in Section 5.2.3.

Why Hadamard product? In 3D, K-
planes reduces to the tri-plane factorization,
which is similar to [Cha+22] except that
the elements are multiplied. A natural ques-
tion is why we multiply rather than add, as
has been used in prior work with tri-plane
models [Cha+22; Pen+20]. Figure 5.3 illus-
trates that combining the planes by multipli-
cation allows K-planes to produce spatially
localized signals, which is not possible with
addition.

This selection ability of the Hadamard
product produces substantial rendering im-
provements for linear decoders and modest
improvement for MLP decoders, as shown
in Table 5.1. This suggests that the MLP
decoder is involved in both view-dependent
color and determining spatial structure. The

Figure 5.3: Addition versus
Hadamard product. Elementwise
addition of plane features (left) com-
pared to multiplication (right), in a
triplane example. A single entry in
each plane is positive and the rest are
zero, selecting a single 3D point by
multiplication but producing intersect-
ing lines by addition. This selection
ability of multiplication improves the
expressivity of our explicit model.

Hadamard product relieves the feature decoder of this extra task and makes it pos-
sible to reach similar performance using a linear decoder solely responsible for view-

dependent color.

Plane Combination Explicit Hybrid # params |
5.2.2 Interpretability Multiplication 35.29  35.75 33M
. Addition 28.78 34.80 33M
The separation of space-only
and space-time planes makes Table 5.1: Ablation study over Hadamard

the model interpretable and product. Multiplication of plane features yields
enables us to incorporate dimension-large improvement in PSNR 1 for our explicit

specific priors. For example, if a
region of the scene never moves,
its temporal component will al-
ways be 1 (the multiplicative
identity), thereby just using the

model, whereas our hybrid model can use its MLP
decoder to partially compensate for the less expres-
sive addition of planes. This experiment uses the
static Lego scene [Mil+20] with 3 scales: 128, 256,
and 512, and 32 features per scale.
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features from the space planes. This offers compression benefits since a static region
can easily be identified and compactly represented. Furthermore, the space-time sep-
aration improves interpretability, i.e. we can track the changes in time by visualizing
the elements in the time-space planes that are not 1. This simplicity, separation, and
interpretability make adding priors straightforward.

Multiscale planes. To encourage spatial smoothness and coherence, our model
contains multiple copies at different spatial resolutions, for example 64, 128, 256, and
512. Models at each scale are treated separately, and the M-dimensional feature
vectors from different scales are concatenated together before being passed to the de-
coder. The red and blue squares in Figure 5.2a-b illustrate bilinear interpolation with
multiscale planes. Inspired by the multiscale hash mapping of Instant-NGP[Miil+22],
this representation efficiently encodes spatial features at different scales, allowing us
to reduce the number of features stored at the highest resolution and thereby further
compressing our model. Empirically, we do not find it necessary to represent our
time dimension at multiple scales.

Total variation in space. Spatial total variation regularization encourages sparse
gradients (with L1 norm) or smooth gradients (with L2 norm), encoding priors over
edges being either sparse or smooth in space. We encourage this in 1D over the spatial
dimensions of each of our space-time planes and in 2D over our space-only planes:

1 hy Ay hy i
7> (IPY =P Y5+ [P — Ppi~3), (5:3)

Lry(P) = [Cln?

€5,

where i, j are indices on the plane’s resolution. Total variation is a common regularizer
in inverse problems and was used in Plenoxels [Fri+22] and TensoRF [Che+22]. We
use the L2 version in our results, though we find that either L2 or .1 produces similar
quality.

Smoothness in time. We encourage smooth motion with a 1D Laplacian (second
derivative) filter

‘Csmooth (P) ZHP?t_l - QP?t + Pzi:’H_lH%v (54)

c,i,t

1
[Cln

to penalize sharp “acceleration” over time. We only apply this regularizer on the time
dimension of our space-time planes.

Sparse transients. We want the static part of the scene to be modeled by the
space-only planes. We encourage this separation of space and time by initializing the
features in the space-time planes as 1 (the multiplicative identity) and using an ¢;
regularizer on these planes during training:

Loep(P) =Y L =P,  ce{at,yt,2t}. (5.5)



40 5 Generative Models for Multiview Stereo

In this way, the space-time plane features of the K-planes decomposition will remain
fixed at 1 if the corresponding spatial content does not change over time.

5.2.3 Feature decoders

We offer two methods to decode the M-dimensional temporally- and spatially-localized
feature vector f(q) from (5.2) into density, o, and view-dependent color, c.

Learned color basis: a linear decoder and explicit model. Plenoxels [Fri+22],
Plenoctrees [Yu+21b], and TensoRF [Che+22] proposed models where spatially-localized
features are used as coefficients of the spherical harmonic (SH) basis, to describe view-
dependent color. Such SH decoders can give both high-fidelity reconstructions and
enhanced interpretability compared to MLP decoders. However, SH coefficients are
difficult to optimize, and their expressivity is limited by the number of SH basis
functions used (often limited 2nd degree harmonics, which produce blurry specular
reflections). Instead, we replace the SH functions with a learned basis, retaining the
interpretability of treating features as coeflicients for a linear decoder yet increasing
the expressivity of the basis and allowing it to adapt to each scene, as was proposed
in NeX [Wiz+21]. We represent the basis using a small MLP that maps each view di-
rection d to red br(d) € RM, green bg(d) € RM, and blue bp(d) € RM basis vectors.
The MLP serves as an adaptive drop-in replacement for the spherical harmonic basis
functions repeated over the three color channels. We obtain the color values

clgd)= |J fl@- bid), (5.6)

i€{R,G,B}

where - denotes the dot product and U denotes concatenation. Similarly, we use a
learned basis b, € RM, independent of the view direction, as a linear decoder for
density:

o(q) = f(q) - bs. (5.7)

Predicted color and density values are finally forced to be in their valid range by
applying the sigmoid to ¢(q,d), and the exponential (with truncated gradient) to

o(q).

MLP decoder: a hybrid model. Our model can also be used with an MLP
decoder like that of Instant-NGP [Mil+22] and DVGO [SSC22], turning it into a
hybrid model. In this version, features are decoded by two small MLPs, one g, that
maps the spatially-localized features into density o and additional features f , and
another grap that maps f and the embedded view direction ~(d) into RGB color

o(a), f(a) = g-(f(q))

(5.8)
c(q,d) = graa(f(q),7(d)).
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Ours-explicit

MixVoxels Neural Volumes Ground truth

Figure 5.4: Qualitative video results. Our hexplane model rivals the rendering
quality of state-of-the-art neural rendering methods. Our renderings were obtained
after at most 4 hours of optimization on a single GPU whereas DyNeRF trained for
a week on 8 GPUs. MixVoxels frame comes from a slightly different video rendering,
and is thus slightly shifted.

As in the linear decoder case, the predicted density and color values are finally
normalized via exponential and sigmoid, respectively.

Global appearance. We also show a simple extension of our K-planes model that
enables it to represent scenes with consistent, static geometry viewed under varying
lighting or appearance conditions. Such scenes appear in the Phototourism [Jin+21]
dataset of famous landmarks photographed at different times of day and in differ-
ent weather. To model this variable appearance, we augment K-planes with an M-
dimensional vector for each training image 1,...,7. Similar to NeRF-W [Mar+21],
we optimize this per-image feature vector and pass it as an additional input to either
the MLP learned color basis bg, bg, bp, in our explicit version, or to the MLP color
decoder grap, in our hybrid version, so that it can affect color but not geometry.
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5.3 Experiments

We demonstrate the broad applicability of our planar decomposition via experiments
in static scenes (both bounded 360° and unbounded forward-facing), dynamic scenes
(forward-facing multi-view and bounded 360° monocular), and Phototourism scenes
with variable appearance. For all experiments, we report the metrics PSNR (pixel-
level similarity) and SSIM! [Wan+04] (structural similarity), as well as approximate
training time and number of parameters (in millions), in Table 5.2. Blank entries
in Table 5.2 denote baseline methods for which the corresponding information is not
readily available.

PSNR 1 SSIM 1 Train Time | # Params |
NeRF [Mil+20] (static, synthetic)

5.3.1 Dynamic scenes

Ours-explicit 32.21  0.960 38 min 33M
Ours-hybrid 32.36 0.962 38 min 33M
We evaluate our hexplane model 5, 0 ri o) 3171 0958  1lmin  ~500M
on two dynamic scene datasets: TensoRF [Che+22] 3314 0963 17 min 18M
a set of synthetic, bounded, INGP [Mil+22) 3318 - 5 min ~ 16M
360°, monocular videos from LLFF [Mil+19] (static, real)
D-NeRF [Pum+21] and a set Ours—expligit 26.78  0.841 33 m%n 19M
Ours-hybrid 26.92  0.847 33 min 19M
of real, unbounded, forward- pienoxels 2629 0.839  24min ~500M
fa,cing, multiview videos from  TensoRF 26.73  0.839 25 min 45M
DyNeRF [L1+22a] D-NeRF [Pum+21] (dynamic, synthetic)
The D-NeRF dataset con- Ours-explicit 31.05 0.97 52 min 37TM
. ioh id f . Ours-hybrid 31.61 0.97 52 min 3™
tains eight videos of varying p.nerr 2067 095 48 hs 1-3M
duration, from 50 frames to  TiNeuVox[Fan+22] 32.67  0.97 30 min ~12M
200 frames per video. Each V4D[Gan+22] 33.72  0.98 4.9 hrs 275M
timestep has a single train- DyNeRF [Li+22a] (dynamic, real)
. . . Ours-explicit 30.88  0.960 3.7 hrs 51M
ing image from a different 5, 7o 31.63 0964 18 s 27M
viewpoint; the camera “tele- DyNeRF [Li+22a] 12958 - 1344 hrs 7™
. . Ti 1
ports” between adjacent times- LLFF [Mil+19] 2324 - - -
MixVoxels-L[Wan+22a] ~ 30.80  0.960 1.3 hrs 125M

tamps [Gao+22].  Standard-

. . Phototourism [Jin+21] (variable appearance)
ized test views are from novel

L. Ours-explicit 22.25  0.859 35 min 36M
camera positions at a range  Qus-hybrid 2992 0877 35 min 36M
of timestamps throughout the NeRF-W [Mar+2}] 27.00  0.962 384 hrs ~2M

id Both licit d NeRF-W (public)? 19.70  0.764 164 hrs ~2M
video. o our explicit an Learnlt [Tan+21] 19.26 - - -

hybrid models outperform D-
NeRF in both quality met- Table 5.2: Results. Averaged metrics over all

rics and training time, though scenes in the respective datasets. Note that Photo-

they do not surpass very re- tourism scenes use MS-SSIM (multiscale structural

cent hybrid methods TiNeuVox similarity) instead of SSIM. K-planes timings are
based on a single NVIDIA A30 GPU.

1Note that among prior work, some evaluate using an implementation of SSIM from MipNeRF
[Bar+21] whereas others use the scikit-image implementation, which tends to produce higher values.
For fair comparison on each dataset we make a best effort to use the same SSIM implementation as
the relevant prior work.
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[Fan+22] and V4D [Gan+22],
as shown in Figure 5.5.

The DyNeRF dataset contains six 10-second videos recorded at 30 fps simulta-
neously by 15-20 cameras from a range of forward-facing view directions; the exact
number of cameras varies per scene because a few cameras produced miscalibrated
videos. A central camera is reserved for evaluation, and training uses frames from the
remaining cameras. Both our methods again produce similar quality metrics to prior
state-of-the-art, including recent hybrid method MixVoxels [Wan+22a], with our hy-
brid method achieving higher quality metrics. See Figure 5.4 for a visual comparison.

5.3.1.1 Decomposing time and space

One neat consequence of our planar decomposition of time and space is that it nat-
urally disentangles dynamic and static portions of the scene. The static-only part
of the scene can be obtained by setting the three time planes to one (the multiplica-
tive identity). Subtracting the static-only rendered image from the full rendering
(i.e. with the time plane parameters not set to 1), we can reveal the dynamic part
of the scene. Figure 5.7 shows this decomposition of time and space. This natural
volumetric disentanglement of a scene into static and dynamic regions may enable
many applications across augmented and virtual reality [Ben+22].

We can also visualize the time planes to better understand where motion occurs
in a video. Figure 5.6 shows the averaged features learned by the xt plane in our
model for the flame salmon and cut beef DyNeRF videos, in which we can identify
the motions of the hands in both space and time. The xt plane learns to be sparse,
with most entries equal to the multiplicative identity, due to a combination of our

((a)) Ours-explicit ((b)) TiNeuVox ((c)) V4D ((d)) D-NeRF

Figure 5.5: Zoomed qualitative results on scenes from D-NeRF [Pum-21].
Visual comparison of K-planes, D-NeRF [Pum+21], TiNeuVox [Fan+22] and
V4D [Gan+22], on t-rez (top) and hook (bottom).
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Figure 5.6: Visualization of a time plane. The zt plane highlights the dynamic
regions in the scene. The wiggly patterns across time correspond to the motion of
the person’s hands and cooking tools, in the flame salmon scene (left) where only one
hand moves and the cut beef scene (right) where both hands move.

Figure 5.7: Decomposition of space and time. K-planes (left) naturally decom-
poses a 3D video into static and dynamic components. We render the static part
(middle) by setting the time planes to the identity, and the remainder (right) is the
dynamic part. Top shows the flame salmon multiview video [Li+22a] and bottom
shows the jumping jacks monocular video [Pum-+21].

sparse transients prior and the true sparsity of motion in the video. For example, in
the left side of Figure 5.6 one of the cook’s arms contains most of the motion, while
in the right side both arms move. Having access to such an explicit representation of
time allows us to add time-specific priors.
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5.3.2 Variable appearance

Our variable appearance experiments use the Phototourism dataset [Jin+21], which
includes photos of well-known landmarks taken by tourists with arbitrary view di-
rections, lighting conditions, and transient occluders, mostly other tourists. Our
experimental conditions parallel those of NeRF-W [Mar+21]: we train on more than
a thousand tourist photographs and test on a standard set that is free of transient
occluders.

Like NeRF-W, we evaluate
on test images by optimizing
our per-image appearance fea-
ture on the left half of the image
and computing metrics on the
right half. Visual comparison to
prior work is shown in the ap-
pendix. Also similar to NeRF-
W [Mar+21; Boj+17], we can
interpolate in the appearance
code space. Since only the color
decoder (and not the density

decoder) takes the appearance
code as input, our approach is Figure 5.8: Appearance interpolation. Like

guaranteed not to change the NeRF-W [Mar+21], we can interpolate our appear-
geometry, regardless of whether ance code to alter the visual appearance of land-
we use our explicit or our hybrid marks. We show three test views from the Trevi
model. Figure 5.8 shows that fountain with appearance codes corresponding to

our planar decomposition with day and night.
a 32-dimensional appearance code is sufficient to accurately capture global appear-
ance changes in the scene.

5.4 Generative modelling of 3D shapes

These NeRF models presented in the dynamic setting required extensive captures, and
the rendering quality greatly deteriorate when fewer images are available during the
reconstruction process or when a view far away from the training views are rendered.

Thus, casual captures of NeRFs [Mil+20] are usually of lower quality than most
captures shown in NeRF papers. When a typical user (e.g., a hobbyist) captures a
NeRFs, the ultimate objective is often to render a fly-through path from a considerably
different set of viewpoints than the originally captured images. This large viewpoint
change between training and rendering views usually reveals floater artifacts and bad
geometry, as shown in Figure 5.9a. One way to resolve these artifacts is to teach
or otherwise encourage users to more extensively capture a scene, as is commonly
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Distance from nearest training view
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(b) Our proposed evaluation setting (c) Novel views away from training images

Figure 5.9: Nerfbusters. Rendering NeRFs at novel views far away from training
views can result in artifacts, such as floaters or bad geometry. These artifacts are
prevalent in in-the-wild captures (a) but are rarely seen in NeRF benchmarks, be-
cause evaluation views are often selected from the same camera path as the training
views. We propose a new dataset of in-the-wild captures and a more realistic eval-
uation procedure (b), where each scene is captured by two paths: one for training
and one for evaluation. We also propose Nerfbusters, a 3D diffusion-based method
that improves scene geometry and reduces floaters (c), significantly improving upon
existing regularizers in this more realistic evaluation setting.

done in apps such as Polycam? and Luma®, which will direct users to make three

circles at three different elevations looking inward at the object of interest. However,
these capture processes can be tedious, and furthermore, users may not always follow
complex capture instructions well enough to get an artifact-free capture.

Another way to clean NeRF artifacts is to develop algorithms that allow for better
out-of-distribution NeRF renderings. Prior work has explored ways of mitigating ar-
tifacts by using camera pose optimization [Wan+21; Lin+421] to handle noisy camera
poses, per-image appearance embeddings to handle changes in exposure [Mar+21], or
robust loss functions to handle transient occluders [Sab+23]. However, while these
techniques and others show improvements on standard benchmarks, most benchmarks
focus on evaluating image quality at held-out frames from the training sequence, which
is not usually representative of visual quality at novel viewpoints. Figure 5.9¢ shows
how the Nerfacto method starts to degrade as the novel-view becomes more extreme.

We propose both (1) a novel method for cleaning up casually captured NeRFs
and (2) a new evaluation procedure for measuring the quality of a NeRF that better
reflects rendered image quality at novel viewpoints. Our proposed evaluation proto-
col is to capture two videos: one for training a NeRF, and a second for novel-view
evaluation (Figure 5.9b). Using the images from the second capture as ground-truth
(as well as depth and normals extracted from a reconstruction on all frames), we can
compute a set of metrics on visible regions where we expect the scene to have been
reasonably captured in the training sequence. Following this evaluation protocol, we

*https://poly.cam/
Shttps://lumalabs.ai/
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capture a new dataset with 12 scenes, each with two camera sequences for training
and evaluation.

We also propose Nerfbusters, a method aimed at improving geometry for everyday
NeRF captures by improving surface coherence, cleaning up floaters, and removing
cloudy artifacts. Our method learns a local 3D geometric prior with a diffusion
network trained on synthetic 3D data and uses this prior to encourage plausible
geometry during NeRF optimization. Compared to global 3D priors, local geometry
is simpler, category-agnostic, and more repeatable, making it suitable for arbitrary
scenes and smaller-scale networks (a 28 Mb U-Net effectively models the distribution
of all plausible surface patches). Given this data-driven, local 3D prior, we use a
novel unconditional Density Score Distillation Sampling (DSDS) loss to regularize the
NeRF. We find that this technique removes floaters and makes the scene geometry
crisper. To the best of our knowledge, we are the first to demonstrate that a learned
local 3D prior can improve NeRFs. Empirically, we demonstrate that Nerfbusters
achieves state-of-the-art performance for casual captures compared to other geometry
regularizers.

Evaluating NeRFs in-the-wild. Early works in neural rendering [Mil+19],
including NeRF [Mil+20], established an evaluation protocol for novel view synthe-
sis, where every 8th frame from a camera trajectory is used for evaluation. Most
follow-up works have adapted this protocol and demonstrated impressive results on
forward-facing scenes in LLFF [Mil+19], synthetic scenes [Mil+20], or 360 scenes
[Bar+22b; Rei+21]. In these datasets, the training and evaluation views share cam-
era trajectories, thus the methods are evaluated only for small viewpoint changes, as
illustrated in Figure 5.10. In contrast, we propose to record two camera trajectories,

MipNeRF 360

Nerfbusters

(&l Training images [l Evaluation images

Figure 5.10: Evaluation protocols. Current evaluation of NeRFs (e.g., MipNeRF
360) measures render quality at every 8th frame of the captured (training) trajectory,
thus only testing the model’s ability to render views with small viewpoint changes. In
contrast, we propose a new evaluation protocol, where two sequences are captured of
the same scene: one for training and one for evaluation. Please see the supplementary
material for plots showing the training and evaluation sequences for various NeRF
datasets, including our proposed Nerfbuster Dataset.
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one for training and one for evaluation.

We find that viewpoint changes are very limited, and the proposed Nerfbuster
dataset is much more challenging. Recently, Gao et al. [Gao+22] revisited the eval-
uation process for dynamic NeRFs, also highlighting shortcomings in dynamic NeRF
evaluation. NeRFs for extreme viewpoint changes and few-shot reconstruction have
been explored on ShapeNet [Cha+15], DTU [Jen+14], and CO3D [Rei+21], where a
few or just a single view is available during training. These works focus on the gen-
eralization and hallucination of unseen regions, and either assume a category-specific
prior [ZT22; Yu+21a] or focus on simple scenes [Yu+21a]. In contrast, our casual cap-
tures setting assumes that a 10 — 20 second video is available at training time, better
reflecting how people capture NeRFs. We then evaluate fly-throughs with extreme
novel views on an entirely different video sequence, as illustrated in Figure 5.10.

5.5 Evaluation Procedure

We propose an evaluation protocol that captures two videos, one for training and
one for evaluating a NeRF. Training videos should be around 10 — 20 seconds which
are indicative of what a user might do when prompted to scan an object or scene.
Anything longer than this may reduce the appeal and practicality of using NeRFs. The
second video represents the novel view that a user may wish to render. The second
video is only used as ground truth and does not change how users currently interact
with NeRFs. We record 12 scenes (two videos each) in this way to construct our
Nerfbusters Dataset. All videos were taken with a hand-held phone to approximate
the casual capture setup.

Evaluating on casual captures. The steps to create our evaluation data can
be boiled down to the following straightforward steps:

Record a video to train a NeRF (training split)

Record a second video with a viewpoint change (evaluation split)

Extract images from both videos and run SfM on all images

Train a “pseudo ground truth” model on both splits and save depth, normal,
and visibility maps for the evaluation split.

5. Train your proposed method on the training split and evaluate with the evalu-
ation split images and their pseudo ground truth maps.

=W

In Figure 5.11, we show an evaluation image and its visibility, depth, and normal
maps. The pseudo ground truth is high quality since it has been trained together
with the first video. The visibility map is computed by taking the depth map, back-
projecting each pixel into a 3D point, and then counting how many times that 3D
point is seen from a training viewpoint. This dataset with associated visibility masks
and processing code can be found at https://ethanweber .me/nerfbusters.

Masking valid regions. Rendering extreme novel views exposes part of the
scene that was not captured in the training views. As most existing NeRFs are not
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Eval image Visibility Masked Pred Pred depth "Pred normals

Figure 5.11: Evaluation capture. Here we show the data used in our evaluation
protocol. The evaluation trajectory is a separate capture that is held out during the
optimization of the NeRF. Individual components shown here are further described
in Section 5.5.

designed to hallucinate completely unseen views, we only evaluate regions observed
in the train capture trajectories using visibility masks.
= 5l
ﬁ‘t 5 ;4 h,y;»

S W
RES

More specifically, we mask out regions that
are either (1) not seen by any training views (i.e.,
where the visibility map is zero) or (2) are pre-
dicted to be too far away (i.e., predicted depth
> distance threshold). We set this threshold to
two times the largest distance between any two
camera origins in both the training and evalua-
tion splits. In the Nerfstudio codebase, this cor-
responds to a value of 2 because camera poses are

NN N
scaled to fit within a box with bounds (-1,-1,-1) ~ . <

and (1,1,1). 4 ﬁﬁ ,,

Coverage. Because we mask out pixels by =1 < / <
— < \”

both visibility [Gao+22] and depth, we report Ns
“coverage” which is the percent of evaluated pix-
els within the visible regions, commonly reported
in depth completion [ZF18; War+22; WRL22]. Figure 5.12: Training data for
For example, removing all densities and predict- Nerfbusters diffusion model.
ing infinite depth would result in zero coverage. Given a mesh, we extract local
Image quality and geometry metrics. C}lbes scaled .1_10% of the ijSh
We use masked versions of PSNR, SSIM, and ¢ We VOX%IIZG these cubes with
LPIPS for image quality. We also report on rgsolutlon 32%, and fimugment them
depth (MSE and mean abs. disparity difference) with r'an(%om rotations and ran-
and normals (mean and median degrees, and the dom dilation.
percent of valid pixels with normals < 30 degrees). We report averages for all images
in the Nerfbusters Dataset in Sec. 5.7.

Extract cubes from mesh Voxelize Rotate Dilate
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Figure 5.13: Method overview. We learn a local 3D prior with a diffusion model
that regularizes the 3D geometry of NeRFs. We use importance sampling to query a
323 cube of NeRF densities. We binarize these densities and perform one single de-
noising step using a pre-trained 3D diffusion model. With these denoised densities, we
compute a density score distillation sampling (DSDS) that penalizes NeRF densities
where the diffusion model predicts empty voxels and pushes the NeRF densities above
the target w where the diffusion model predicts occupied voxels m = 1{z¢ < 0}.

5.6 Nerfbusters model

Our method consists of two steps. First, we train a diffusion model to denoise local
3D cubes. This model is trained on synthetic data and learns a prior over local 3D
shapes. Second, we apply this local prior to real 3D scenes represented by NeRFs.
We do this by querying densities in local cubes in the scene and using a novel Density
Score Distillation Score (DSDS) loss to regularize our implicit scene representation.
This prior improves reconstructions in regions with sparse supervision signals and
removes floaters. Figure 5.13 provides an overview of our pipeline.

5.6.1 Data-driven 3D prior

Following the recent process in the context of denoising generative diffusion models
[Soh+15; SE19; ND21; Rom+21; Poo+22], we formulate our generative model as a
denoising diffusion probabilistic model (DDPM) [HJA20], which iteratively denoises
a voxelized 32 x 32 x 32 cube x of occupancy. Our diffusion model ¢y is trained with

Lpig = ||6 — 69(\/(57t$0 + V1 — (qe, t)”g, (59)

where ¢ ~ U(0,1000), € ~ N(0,I) and @ follows a linear schedule that determines the
amount of noise added at timestep t. We implement our diffusion model as a small 3D
U-Net [RFB15] with three downsampling layers that double the number of channels
per downsampling. We train the model on synthetic 3D cubes from ShapeNet and
find that a small U-Net with only 7.2 M parameters (28MB) is sufficient to learn a
local 3D prior over shapes.
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5.6.2 Curate synthetic 3D cubes

We train our diffusion model on local cubes sampled from ShapeNet [Cha+15], il-
lustrated in Figure 5.12. We sample a random ShapeNet mesh and extract IV local
meshes at the boundary with sizes between 1-10% of the mesh min and max vertices.
We voxelize these local meshes into cubes with a resolution of 323. We then augment
the cubes with random rotations and dilation. This data processing pipeline is fast
and performed online during training to increase the diversity of 3D cubes. We find
that adjusting the thickness of the surface with dilation rather than infilling the mesh
is faster and better defined for non-watertight meshes. Figure 5.12 illustrates the
large diversity in the local cubes—some contain flat surfaces (bottom of the vase),
round shapes (stem), and fine structures (leaves).

5.6.3 Applying 3D prior in-the-wild

We represent a 3D scene with a Neural Radiance Field (NeRF), [Mil+20] which takes
a 3D point as input and outputs color and density, and is trained with differen-
tiable volume rendering [Mil4+20; Max95]. We build on the Nerfacto model from
Nerfstudio [Tan+23] that combines recent progress in NeRFs including hash grid en-
coding [Miil422], proposal sampling [Bar+21], per-image-appearance optimization
[Mar+21], and scene contraction [Bar+21]. Although Nerfacto has been optimized
for in-the-wild image captures, it still reveals floaters when rendered from novel views.
To address these issues, we leverage the pretrained Nerfbusters diffusion model. We
propose a novel sampling strategy that samples cubes from non-empty regions and a
Density Score Distillation Sampling (DSDS) loss that distills the diffusion prior into
the NeRF. As a result, our approach yields better scene geometry.

Importance sampling cubes. Since the NeRF represents a density field, we
can query voxelized cubes in 3D space at any size, location, and resolution. For
an efficient sampling of the location of the 3D cubes, we propose to store a low-
resolution occupancy grid of either accumulation weights or densities. We sample the
location of the 3D cubes from the distribution of this low-resolution occupancy grid.
Storing accumulation weights in the occupancy grid yields cubes sampled mostly on
frequently seen surfaces. Whereas, storing densities in the occupancy grid enables
sampling of occluded regions. In practice, we clamp densities to one, to avoid a
few densities dominating the sampling probability. We apply an exponential moving
average (EMA) decay on the grid to update the occupancy grid when floaters are
deleted. This importance sampling method comes with almost no added cost since
we store the densities or weights along the rays already used for volume rendering,
and use a small 203 occupancy grid. Following the sampling of a cube center location,
we proceed to sample cubes of resolution 323 and 1-10% of the scene.

Density Score Distillation Sampling (DSDS). Our diffusion model is trained
on discretized synthetic data in {—1, 1} indicating free or occupied space, respectively.
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Nerfacto Nerfacto + Visibility Sparsity + Vis TV + Vis RegNeRF + Vis

Figure 5.14: Qualitative results. NeRFs suffer from floaters and bad geometry
when rendered away from training views. Our proposed diffusion prior fills holes
(first rows), removes floaters (second and fifth row), and improves geometry (all).
Please see the supplementary material for video results on our evaluation splits.
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NeRF densities, on the other hand, are in [0, 00), where low densities indicate free
space and larger densities mean more occupied space. In practice, we observe that
densities less than 0.01 are mostly free space, whereas occupied space have density
values ranging from [0.01,2000]. We propose a Density Score Distillation Sampling
(DSDS) loss that handles the domain gap between the densities without exploiting
gradients.

Given a cube of NeRF densities o, we discretize the densities x; = 1 if 0 > 7 else
—1 at time ¢, where 7 is a hyperparameter that decides at what density to consider
a voxel for empty or occupied. The Nerfbusters diffusion model then predicts the
denoised cube zy. The timestep ¢ is a hyperparameter that determines how much
noise the diffusion model should remove and can be interpreted as a learning rate.
In practice, we choose a small ¢ € [10,50]. With the denoised cube xg, we penalize
NeRF densities that the diffusion model predicts as empty or increase densities that
the diffusion model predicts as occupied with

Lpsps = Zmiai + (1 = m;) max(w — 04,0), (5.10)

where m = 1{zy < 0} is a mask based on the denoised predictions. We penalize
densities where the diffusion model predicts emptiness and increase densities where
the model predicts occupancy. w is a hyperparameter that determines how much to
increase the densities in occupied space. The max operator ensures that no loss is
applied if an occupied voxel already has a density above w. Similar to SDS [Poo+22;
Wan+22b], the DSDS loss distills the diffusion prior with a single forward pass and
without backpropagating through the diffusion model.

Why not just... use a differentiable function to convert densities to the valid
range of the diffusion model, then compute the SDS loss [Poo+22; Wan+22b], and
then backpropagate through the activation function? This would require a function s :
o — z; tomap s(0) = —1, s(r) = 0, and s(27) = 1, where 7 is the crossing value where
densities begin to be occupied. A scaled and shifted sigmoid function or a clamped
linear function satisfies these requirements, but both have very steep gradients in some
regions and no gradients in other regions, resulting in issues when backpropagating.
In contrast, DSDS has gradients for any density predicted to be empty or occupied.
In practice, we set 7 = w = 0.01 meaning our method deletes densities at points
predicted to be empty and otherwise leaves the points unconstrained for the NeRF
RGB loss to freely optimize.

Why not just... use accumulated weights, which are in the range [0, 1]?7 Weights
are more well-behaved than densities but more expensive to compute as they require
shooting a ray through the scene, evaluating and accumulating the densities along a
ray. This results in significantly more function calls, but more fundamentally, requires
one to specify a view from which to shoot the rays. This limits the diffusion prior
to improving regions that are visible regions from the chosen view. A similar issue
arises when using 2D or 2.5D priors [Nie+22; WT23], where they may not regularize
occluded regions unless viewpoints are chosen in a scene-specific way.



54 5 Generative Models for Multiview Stereo

Render from one eval viewpoint

Train images

Eval images

Nerfacto Nerfacto + Vis Loss

Figure 5.15: Visibility loss. Our visibility loss enables stepping behind or outside
the training camera frustums. We accomplish this by supervising densities to be low
when not seen by at least one training view. Other solutions would be to store an
occupancy grid [Miil+22] or compute ray-frustum intersection tests during rendering.
Our solution is easy to implement and applicable to any NeRF.

5.6.4 Visibility Loss

Our proposed local 3D diffusion model improves scene geometry and removes floaters,
but it requires decent starting densities since it operates locally and thus needs contex-
tual information to ground its denoising steps. To this end, we propose a simple loss
that penalizes densities at 3D locations that are not seen by multiple training views.
We find this simple regularizer effective in removing floaters from regions outside the
convex hull of the training views. We define our visibility loss as

Lyis = ZV<qi>fa<ql->, (5.11)

where f,(q;) = 0; is the NeRF density at the 3D location ¢;, and V(g;) = ]I{ijl v <
1} indicates if the location is not visible from any training views. We approximate
the visibility v;; € {0,1} of the ¢’th 3D location in the j’th training view with a frus-
tum check. This approximation does not handle occlusions, instead overestimates the
number of views a location is visible from. This loss penalizes densities in regions not
seen by training images.

In practice, we implement this by defining a single tight sphere around our training
images and render batches of rays that shoot from a random location on the sphere
surface, through the center of the scene, and far off into the distance. We render rays
with Nerfacto and apply this loss to the sampled points. Nerfacto uses a proposal
sampler [Bar+422b] to importance sample around surfaces, so our loss is effective in
quickly culling away any floating artifacts with high density outside visible regions.
See Figure 5.15 for a qualitative result where we render from behind training images.
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| PSNR 1 SSIMt LPIPS | | Depth | Disp. | | Mean ® | Median ® | % 30° + Coverage 1

Nerfacto Pseudo GT 25.98 0.8591  0.1019 0.0 0.0 0.0 0.0 1.0 0.893
Nerfacto 17.00 0.5267 0.3800 126.277  1.510 60.63 54.638 0.254 0.896
+ Visibility Loss 17.81 0.5538  0.3432 100.057  1.041 57.73 51.335 0.280 0.854
+ Vis + Sparsity [Yu+21b] | 17.81 0.5536  0.3445 92.168 1.145 57.77 51.399 0.280 0.854
+ Vis + TV [Fri+22] 17.84 0.5617  0.3409 74.015 0.382 61.93 56.164 0.242 0.843
+ Vis + RegNeRF [Nie+22] | 17.49 0.5396  0.3585 182.447  1.200 59.39 53.267 0.268 0.858
+ Vis 4+ DSDS (Ours) 17.99 0.6060 0.2496 54.453 0.114 54.77 47.981 0.295 0.630

Table 5.3: Quantitative evaluation. NeRFs suffer when rendered away from the
training trajectories. Existing regularizers do not suffice to improve the geometry.
Nerfbusters learns a local 3D prior with a diffusion model, which removes floaters
and improves the scene geometry. Results are averaged across 12 scenes.

Cube sampling strategies
PSNR  SSIM ‘ Disp. ‘ Mean ° ‘ Cov.

Uniform 14.61 0.4276 10.288 | 61.52 0.886
Densities o 16.46 0.5086 | 0.081 | 49.21 0.606
Weights 15.86 0.4466 0.112 53.09 0.634

Activation functions
PSNR  SSIM ‘ Disp. ‘ Mean ° ‘ Cov.
Clamp+SDS 12.53 0.2652 2.065 87.33 1.000

Sigmoid+SDS | 12.53 0.2652 2.065 87.33 1.000
o-+DSDS 15.86 0.4466 | 0.112 | 53.09 0.634

Cube size range as % of scene
‘ PSNR  SSIM ‘ Disp. ‘ Mean ° ‘ Cov.

1-20% 17.05 0.5005 | 0.083 | 54.87 0.600
10-20% 16.93 0.4884 0.090 50.78 0.640
1-10% 15.86 0.4466 0.112 53.09 0.634

Table 5.4: Ablation study. Ablation on the “garbage” scene for different settings
of using our 3D prior as a NeRF loss. Cube sampling refers to uniformly sampling
the entire scene versus importance sampling with accumulated weights or densities.

5.7 Experiments

We follow our proposed protocol described in detail in Sec. 5.5. We apply different
regularizers as a post-processing approach to clean up NeRFs and also run ablations
on our proposed method.

Implementation details. For each experiment, we use the Nerfacto model within
the Nerfstudio [Tan+23] codebase. We turn off pose estimation for evaluation pur-
poses and then train Nerfacto for 30K iterations which takes up to half an hour. We
then fine-tune from this checkpoint with different regularizer methods. We compare
the proposed method with vanilla Nerfacto, Nerfacto with the proposed visibility loss,
Nerfacto with our visibility loss and 3D sparsity loss [Yu+21b], 3D TV regularization
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Figure 5.16: Ablations results. Using a simple activation function and SDS results
in a not-well-behaved gradient signal, increasing the number of floaters in the scene.
Importance sampling more effectively applies the 3D cube loss in space, cleaning up
floaters and improving the scene geometry.

[Fri+22], and 2D TV which is RegNeRF [Nie422]. Our implementations also use
the distortion loss [Bar+22b] which is on by default with Nerfacto. All methods are
effective within the first 1K iterations of fine-tuning (~4 minutes on an NVIDIA RTX
A5000 for Nerfbusters), but we train for 5K iterations. For the 3D baselines, we sam-
ple 40 323 cubes per iteration and for the 2D baseline RegNeRF, we render ten 322
patches. The usual NeRF reconstruction loss is also applied during fine-tuning with
4096 rays per batch.

Results. Table 5.3 shows that visibility loss improves vanilla Nerfacto across all
quality metrics. Existing hand-crafted regularizers do not improve upon this baseline.
In contrast, our learn local diffusion prior removes floaters and improves the scene
geometry, yielding state-of-the-art results on these challenging casual captures. The
proposed method deletes floaters, and thus we find that it has lower coverage than the
baselines. Figure 5.14 shows a qualitative comparison of the methods for both indoor
and outdoor scenes. We find that our method improves geometry by completing holes
(see the chair in the first row), removing floaters (see in front of century plant in the
second row and garbage truck in the fourth row), and sharping geometry (see the
under the bench in the third row).

Ablations of our 3D prior on real data We ablate our method on the “garbage”
scene (Table 5.4). We find that the cube sampling strategies (i.e., where to apply the
diffusion prior) are important, and using the proposed importance sampling with den-
sities yields the best performance. Figure 5.16 compares uniform sampling with im-
portance sampling (using densities). Importance sampling samples less empty space,
and thus is more effective at cleaning up floaters and scene geometry. We compare
the proposed DSDS loss against SDS with either a scaled and shifted sigmoid or a
clamped sigmoid that satisfies our requirements (see Section 5.6.3). We find the gra-
dients do not flow well through this activation function resulting in a distorted scene
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Figure 5.17: Limitations. The proposed model only operates on densities, which
comes with some limitations. We find that it cannot distinguish floaters from trans-
parent objects (left). It does not hallucinate texture and thus ends up removing
regions that are occluded in all training views (right).

with many floaters (see Figure 5.16 left). We also ablate the cube sizes used cubes
size ranging from 1% to 20% of the scene scale. We find that our method is relatively
robust to the cube sizes, yielding a trade-off between removing more with larger cubes
and removing less with smaller cubes.

Transparent objects. NeRFs are able to represent transparent objects by as-
signing low densities to the transparent object. These transparent densities behave
similarly to floaters, and it requires semantic information to distinguish the two. Since
our local diffusion prior does not have semantic information, it removes transparent
objects as illustrated in the vase in Figure 5.17.

Hallucinating texture. The proposed method cleans geometry but cannot edit
texture, as our method operates on densities. This means that we can remove regions
that contain floaters or fill holes, but we cannot colorize these regions. We leave
colorization and inpainting low-confidence regions to future work, where 2D diffu-
sion priors [Poo+22; Mel+23] or 3D-consistent inpainting [Liu+21; Li+22b] may be
relevant.

5.8 Summary

In this chapter, we explored NeRFs to reconstruct 3D models containing dynamic
scenes or models casually captured. The main conclusions summarize as follows:

Dynamic We introduced a simple yet versatile method to decompose a d-dimensional

space into (‘21) planes, which can be optimized directly from indirect measurements
and scales gracefully in model size and optimization time with increasing dimension.

NeRF evaluation. We propose a new evaluation procedure of Neural Radiance
Fields (NeRFs) that better encompasses how artists or hobbyists use the technology.
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Generative priors. We present a data-driven, local 3D diffusion prior, Nerf-
busters, that removes floaters and improves the scene geometry.



CHAPTER é
3D Reasoning

The previous chapters addressed the creation of a dense 3D map from a collection
of images. Once we have such a dense 3D model, we want to be able to interact
and manipulate it. The ability to interact with a 3D environment is of fundamental
importance for many augmented reality (AR) application domains such as interactive
visualization, entertainment, games, and robotics [ML14]. Such interactions are often
semantic in nature, capturing specified entities in a 3D scene and manipulating them
accordingly. In this chapter, we first present a novel framework for (1) semantically
disentangling parts of a scene and then (2) propose several objectives for manipulating
the disentangled parts.

This chapter contains parts from Volumetric Disentanglement for 8D Scene Ma-
nipulation [Ben+22]. Not all experiments, results, and related works are presented to
keep the text shorter.

6.1 Disentangled Object Representation

We first propose a method to disentangle a NeRF representation into a foreground
and background scene in a semantically consistent manner. We propose to train
two NeRFs [Mil+20], one to represent the full scene and another to represent the
background. We subtract these two representations to obtain the foreground object as
illustrated in Figure 6.1. Then, we can manipulate this disentangled foreground object
and compose it back into the 3D representation, ensuring semantically consistent
volumetric scene edits.

The full volume can be trained with the standard training proposed in [Mil+20].
We train the background volume by minimizing a masked reconstruction loss between
real and rendered ray color

Log(r) = ||(1 = m(r)) © (c(r) = &(r)|I3, (6.1)

where ¢(r) is the photographed color of a ray, é(r) is the rendered color of a ray, and
m(r) indicates if the ray belongs to the foreground object. With this training loss,
we can learn a background NeRF only using 2D masks as an additional input.

The foreground object can then be found using the principle of volume mix-
ing [DCHS88]:
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N
Crg(r) =Y Wiy wi=whg —wh, g =dhu—cy  (62)
=1

where c¢f4(r) is the foreground volume color at the pixel location corresponding to
ray r, wy, and Cpy are the estimated weights and colors of the background volume

and w}u” and cz}u” are the weights and colors of the full volume.

Object Controls. The camera parameters, poses, rays, and sampled points along
the rays are chosen to be identical for both the full volume and the background volume,
and hence also identical to the foreground volume. Given this canonical setting, the
corresponding points along the rays for both the foreground and background can be
easily found. This natural correspondence allows us to modify either the foreground
volume or the background volume and then recombine into a modified rendering

N
d(r)= Z Why * Chy + Wy ey (6.3)
=1

where ¢/(r) is the recombined color, ﬁ/; @ Ezf @ uiég, E’ég are the modified weights and
colors for the foreground and background volumes. In our experiments, we only
modify the foreground and so wy, = wy , ¢, = ¢},

Full Scene

Disentangled Volumetric Semantically Consistent Manipulated 3D Volume

(RGBo) Foreground Object Volumetric Manipulation
(z,y,2,0,0)
e
Background Scene
(RGBo) J
Y i
(@.9,2.0,6)
iy

Figure 6.1: Overview of our disentanglement framework. We learn a volumetric
representation of the background and full scene using NeRF. We subtract the full and
the background volumes to obtain a disentangled foreground volume. Then, we can
manipulate the foreground volume without changing the background. We can place
the foreground object back into the original scene by adding it volumetrically to the
background scene, obtaining a manipulated scene.
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K f Volume Rendering
- (z,d) — — (RGBo) /\ \/\

Ray Distance
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Rendering Loss H —g.t. H%
E Masked Rendering Loss H(l - m) ® ( 7g.t.)H%
T e

Target View & Mask

Figure 6.2: Training losses for the background and full scene. We train a
neural radiance field on the full scene. To train the background scene, we apply a
masked rendering loss, where regions that are projected inside a 2D mask (1 — m),
are not penalized in the loss. The network learns to reconstruct this region based on
correlated effects, such as how light from the surrounding affects the masked regions,
and multi-view geometry, where the background might not be masked from another
view.

6.2 Object Manipulation

Given the ability to control the foreground and background volumes separately, we
now propose a set of downstream manipulation tasks that emerge from our disentan-
gled representation. As noted in Section 6.1, we can now control the weights, colors
as well as translation parameters separately for the foreground and background vol-
umes and so introduce a set of manipulation tasks that use the controls. The task of
Object Remowal is equivalent to displaying the background volume in isolation.

Object Transformation. Due to the alignment of camera parameters, as well as
chosen poses, rays, and sampled points along the rays, one can apply a transforma-
tion on the background and foreground volumes separately, before recombining the
volumes together. For either the foreground or the background, and for a given trans-
formation T' (for example, a rotation or translation), we simply evaluate the color
and weight of point p using fy at position 7-!(p) and then recombine the volumes
together using (6.3).

Object Camouflage. We can change the texture of the foreground 3D object such
that it is difficult to detect from its background [Owe+14; Guo+22]. Such an ability
can be useful in the context of diminished reality [MIS17]. We fix the depth of the
foreground object while manipulating its texture. As the depth of the foreground
is derived from w}g, we fix w}g = w;g and only optimize Ej}-g. We follow (6.3), in
compositing the foreground and background volumes. Let the resulting output of a
ray be ¢é(r), and let éy4(r) be the corresponding output for the background volume.
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We optimize a neural radiance field for foreground colors 53} 9 with the following loss:

Ecamouflage(r) - ||é(1") - ébg(r)Hg (64)

As the depth is fixed, only the foreground object colors are changed so as to match
the background volume as closely as possible.

Non-negative 3D Inpainting. We consider the setting of non-negative image
generation [Luo+21], where we perform non-negative changes to the full scene to
most closely resemble the background volume. This constraint is imposed in optical-
see-through devices that can only add light to an image. In this case, we learn a
residual volume to render rays éresidguaql(r) with the following loss:

»Cnonfnegative(r) - ||éfull (T) + éresidual (7") - ébg (T)H% (65)
where élf ull are rendered ray of the full scene. That is, we learn a residual volume, such
that when added to the full volume, it closely resembles the views of the background.

Semantic Manipulation. We consider a mechanism for the semantic manipulation
of the foreground while adhering to the global semantics of the entire scene. To this
end, we consider the recently proposed model of CLIP [Rad+21], a multi-modal
embedding method that can be used to find the perceptual similarity between images
and texts. One can use CLIP to embed an image I and text prompt ¢, and to
subsequently compare the cosine similarity of the embeddings. Let this operation be
sim(I,t), where a value of 1 indicates perceptually similar of a text and image. We
note that one can also use CLIP to compare the perceptual similarity of two images
I; and I, denoted sim(Iy, I3).

Let & be the result of applying (6.3) to form an entire image, while fixing the
background colors and weights as well as the foreground weights. That is, we only
optimize the foreground colors E; - Similarly, we let #3, to be a rendered view from
the background NeRF. For a user-specified target text ¢, we consider the following
objective:

Lsemantic =1 — sim (2 © m + &pg © (1 — m), 1) (6.6)
+1—-sim(@Om+ I, © (1 —m),Tp, © (1 —m)) (6.7)
|20 (1 —m) =2y, © (1 -m)]f3

The CLIP similarity only improves by making local changes that occur within the
masked region of the foreground object, but it can ’see’ the background as well as
the foreground for context. We enforce that the generated volume views are similar
to both the target text (6.6) and the background (6.7). To further enforce that no
changes are made to the background, we constrain the background of the combined
volume views to match those of the background using (6.8).
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6.2.1 Training and Implementation Details

For training, we consider the natural non-synthetic scenes given in [Mil4-20], together
with their associated pose information. An off-the-shelf segmentation or manual an-
notation is used to extract masks. The method is robust to inaccurate masks such
as those provided by off-the-shelf networks. Our rendering resolution for training the
background and full scenes is 504 x 378. For the manipulation tasks, the same reso-
lution is used for 3D inpainting, object camouflage, transformation and non-negative
inpainting tasks. For the semantic manipulation task, our rendering resolution is
252 x 189. For the CLIP [Rad+21] input, for a given view, we sample a 128 x 128
grid of points from the 252 x 189 output, and then upsample it to 224 x 224, which
is the required input resolution of CLIP. We normalize the images and apply a text
and image embedding as in CLIP [Rad+21]. We follow NeRF [Mil+20], in optimizing
both a “coarse” and “fine” networks for a neural radiance field, and follow the same
sampling strategy of points along the ray. All neural fields are parametrized using an
MLP with ReLU activation of the same architecture of [Mil+20]. We use an Adam
optimizer (31 = 0.9, B2 = 0.999) with a learning rate that begins with 5 x 104 and
decays exponentially to 5 x 107°.

6.3 Experiments

We divide the experimental section into two parts. First, we show that we can success-
fully disentangle the foreground and background volumes from the rest of the scene.
Second, we demonstrate some of the many manipulation tasks this disentanglement
enables, as described in Section 6.2. Corresponding 3D scenes from multiple views
are provided in the project webpage. As far as we can ascertain, no other framework
enables all applications we consider at once, in a simple and intuitive manner.

6.3.1 Object Disentanglement

Figure 6.3 shows views from different scenes where we separate the full scene, back-
ground, and foreground in a volumetrically and semantically consistent manner. As
can be seen, the disentangled objects are consistent across views. Figure 6.4 shows
how the removal of a leaf, a T-rex, and a whiteboard is consistent across multiple
views. The background neural radiance field is made plausible predictions of the back-
ground scene via multi-view geometry and based on the correlated effects from the
scene, e.g. the background behind the leaf or the legs of the T-rex might be occluded
by the 2D mask from one view, but visible from another. However, the background
behind the whiteboard is occluded from every angle. Nevertheless, the background
neural radiance field makes a plausible prediction of the background based on the
correlated effects from the surrounding scene. Further, our model can handle the
disentanglement of non-planar objects, such as the T-rex, well.
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Object Disentanglement Object Manipulation
Ours DeepFill-v2 [Yu+19] EdgeConnect [Naz+19] Ours GLIDE [Nic+21] Blended [ALF21]
Ql 3.86 2.44 2.37 3.85 1.10 1.26
Q2 3.84 1.52 1.86 3.78 1.20 1.26

Table 6.1: A user study performed for the tasks of Object Disentanglement and 3D
Object Manipulation. A mean opinion score (1-5) is shown where users were asked:
(Q1) “How well was the desired task performed?” (object removed or semantically
manipulated) and (Q2) “How realistic is the resulting scene?”

As far as we can ascertain, the closest 2D task to object disentanglement is that
of object inpainting. We consider two prominent baselines of DeepFill-v2 [Yu+19]
and EdgeConnect [Naz+19] for this task and compare our method on the scenes of
leaves and whiteboard removal as in Fig. 6.4. We train the baseline on the same
training images and their associated masks. In order to compare our method on
the same novel views, we train a NeRF [Mil+20] on the resulting outputs, resulting
in a scene with the same novel views as ours. Unlike our method, the results have
3D inconsistencies, artifacts, and flickering between views. Since there do not exist
ground truth images, standard metrics such as PNSR/SSIM are not applicable. We,
therefore, conduct a user study and ask users to rate from a scale of 1 —5: (Q1) “How
well was the object removed?” and (Q2) “How realistic is the resulting scene?” We
consider 25 users and mean opinion scores are shown in Table 6.1.

6.3.2 Object Manipulation

Foreground Transformation. We consider the ability to scale the foreground ob-
ject and place the rescaled object back into the scene by changing the focal length
used to generate the rays of the foreground object, and then volumetrically adding it
back into our background volume. Figure 6.5 shows an example where the disentan-
gled TV is twice as large. We note that other transformations such as translation and
rotation are possible in a similar manner. Figure 6.5 highlights several properties of
our volumetric disentanglement volume. First, the network is able to “hallucinate”
how a plausible background looks in regions occluded across all views, e.g. behind
the TV. It does this based on correlated effects from the rest of the scene. A second
property is that it can disentanglement correlated effects such as the reflections on
the TV screen, which is evident from the almost completely black TV in the fore-
ground scene. Lastly, these correlated effects result in consistent and photo-realistic
reflections, when we place the rescaled TV back into the scene. These reflections are
consistent across views.

Object Camouflage. Another manipulation of interest is of camouflaging an ob-
ject [Owe+14; Guo+22], i.e. only change the texture of the object and not its shape.
Figure 6.6 illustrates examples of camouflaging with fixed depth, but free texture
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Full Scene Background Scene Foreground Object

Figure 6.3: Two rendered views of the full scene, background and fore-
ground. As foreground is obtained by subtracting the background from the full
scene volumetrically (Section 6.1), we also obtain the disparity of the foreground.

“gz,g ot 3 *""'}1 a7
s Ay ;

Figure 6.4: Semantic consistency across views. Uniformly sampled renderings of
the full and the background volumes for three different scenes. The removed object
is visually enhanced in the center column by a 2D mask.
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((a)) Original Scene  ((b)) Background ((c)) Foreground Obj.  ((d)) New Scene

Figure 6.5: Foreground object transformation. Our method makes plausible
predictions in occluded regions (behind the TV) by understanding the correlated
effects from the rest of the scene, such as the light reflections in the TV screen, which
are not visible in the foreground. After scaling the foreground object and placing it
back into the scene, the correlated effects are introduced again, resulting in photo-
realistic and view consistent light reflections on the TV screen.

changes. While the depth of the camouflaged object and that of the foreground
object match, the appearance of the camouflaged object is that of the background.

Non-Negative Inpainting. In optical see-through AR, one might also wish to
camouflage objects [Luo+21] or inpaint them. However, in see-through AR one can
only add light. Figure 6.7 shows how adding light can make the appearance of cam-
ouflage in a 3D consistent manner.

3D Object Manipulation. We now demonstrate how our disentanglement can
be used for 3D object manipulation. Figure 6.8 shows two views of a fern. We have
disentangled both the window mullion in the upper left corner and the tree trunk from
the rest of the scene. Even though the window mullion is occluded in the first view,
and thus our 2D mask is masking the occluding leaf in front of the window mullion,
this occluding object is not part of the disentangled window mullion object. The
3D manipulations are shown in (c)-(e) in Figure 6.8. The manipulated 3D objects
are semantically consistent across views. For the strawberry manipulation in (e),
we see that part of the tree trunk has been camouflaged to more closely resemble
the shape of a strawberry. We compare to 2D text-based inpainting methods of
GLIDE [Nic+21] and Blended Diffusion [ALF21], where we follow the same procedure
as in Section 6.3.1. We consider a similar user as detailed in Section 6.3.1, where Q1
is modified to: “How well was the object semantically manipulated according to the
target text prompt?” For the user study we consider the fern scene of Figure 6.8, for
the text prompts of “strawberry” and “old tree”.
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(a) (b) () (d) (e)
Figure 6.6: Object camouflage for two different random views of a fortress

scene. (a) original scene, (b) background scene, (c) disparity map of the background
scene, (d) camouflaged scene, (e) disparity map of camouflaged scene.

Figure 6.7: Non-negative object inpainting for two views for a scene of
leaves. Given the full scene (a), a residual scene is added (b) resulting in scene (c),
with the aim of being close to the background without the leaf (d).

(a) (b) (c) (d) (e)
Figure 6.8: 3D Object Manipulation. Insets of the disentangled (a) window mul-
lion and manipulated (c)-(e) tree trunk in the original scene (b). Note how the window
mullion is removed without removing the leaf of the fern that occludes it from the
first view. The query text to manipulate the trunks are (¢) Old tree, (d) Aspen tree,
and (e) Strawberry. The manipulated objects are view-consistent.
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Figure 6.9: (a) Failure to completely remo(vg a light source. The original light source is
shown in blue in the middle image and for the background, using our method, on the
right. In orange and green are regions affected by the light source, resulting in the fail-
ure to completely remove it. (b) Illustration of the result of training a neural radiance
field on the masked foreground region. (cl-c4) Ablation for composition. Alternatives
to the composition shown in (6.3) for foreground object translation (Figure 6.5). (d)
Robustness to noisy 2D masks. Our method can handle noisy 2D masked obtained
automatically.

6.3.3 Discussion and Limitations

Our work has some limitations. When light from the background affects the fore-
ground object, we correctly disentangle the illuminations on the object. However,
when the object is a light source, we cannot completely disentangle the object as seen
in Figure 6.9(a). While our work can handle noisy masks, we require masks for all
training views. We leave the task of reducing the number of masks for future work.
Another limitation is with respect to the semantic manipulation of foreground
objects. We found that manipulating too large objects results in an under-constrained
optimization because the signal provided by CLIP is not sufficient. For smaller objects,
the background from multiple views provides a much-needed context for CLIP to
provide a useful signal for the optimization. Our work is orthogonal to recent speed
and generalization extensions of NeRF that could combined with our method. The
number of 2D masks required by our method is also upper bounded by the number
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of training views and so methods such as DietNeRF [JTA21] could be combined with
our method to reduce the number of 2D masks required. We leave such combinations
to future work.

In Figure 6.9(b), we illustrate the necessity of extracting the foreground volume
from the background and the full volume, rather than directly learning the foreground
volume. We tried to train a NeRF to reconstruct the foreground volume directly,
which resulted in an under-constrained optimization.

In Fig. 6.9 (cl to c4), we show, for the task of foreground object translation
(Figure 6.5), alternatives to the recombining method of (6.3), with (c2) ¢, instead
of &, (¢3) W}, instead of W, (c4) c(r) = Zil\il(ﬁ)gg +wY,) - (G + Cry)-

Lastly, our method can handle noisy annotations of the foreground. In Fig-
ure 6.9(d), we demonstrate the masks used for the leaves scene, which were extracted
using an off-the-shelf segmentation algorithm.

6.4 Summary

In this chapter, we presented a framework for volumetric disentanglement of fore-
ground objects from a background scene. The disentangled foreground object is
obtained by volumetrically subtracting a learned volume representation of the back-
ground with one from the entire scene. The foreground-background disentanglement
adheres to object occlusions and background effects such as illumination and reflec-
tions. We established that our disentanglement facilitates separate control of color,
depth, and transformations for both the foreground and background objects. This
enables a wide range of applications, of which we have demonstrated those of fore-
ground transformations, object camouflage, non-negative generation, and 3D object
manipulation.
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CHAPTER 7

Discussion &
Conclusion

This thesis explores several of the core technologies for creating a 3D model from a
collection of images, namely image retrieval, structure from motion, multiview stereo,
and 3D reasoning. The thesis contributes with more efficient and accurate methods
while incorporating uncertainties at several steps along this pipeline. These contribu-
tions allow for more robust systems and reduce the risk of propagating errors through
the reconstruction pipeline. We now summarize each chapter in more detail.

Chapter 2 challenges the de-facto mental model of uncertainties, and advocates
that we instead think about learned versus deduced uncertainties. We present an on-
line MC EM training process for the Laplace approximation (LA) that leads to better
calibrated uncertainties. We present a novel Hessian approximation that enables LA
to scale to large networks with high output resolution.

Chapter 3 presents the Mapillary Street-Level Sequences, a large dataset for place
recognition. We find that some images do not contain enough visual information for
accurate retrieval, which can lead to silent failures. We extend the Laplace approxi-
mation to metric learning, such that we can obtain stochastic embeddings.

Chapter 4 proposes a detector-agnostic method for quantifying the uncertainties
of feature detectors. We find that this yields calibrated uncertainties for feature
matching and that these uncertainties can improve downstream applications such as
camera localization.

Chapter 5 explores two challenging problems in multiview stereo: how to represent
dynamic scenes and how to incorporate learned 3D priors into the reconstruction pro-
cess. In particular, we explore NeRF-based methods. We present an efficient planar
decomposition that generalizes to any dimensional space, memory efficiently repre-
sents dynamic volumes at high resolutions and allows for fast training and rendering.
We also propose to learn a probabilistic model of local 3D shapes that can be distilled
into the reconstruction to improve the scene geometry and remove floaters. This leads
to state-of-the-art reconstruction quality for casually captured NeRFs.

Chapter 6 presents a framework for disentangling and manipulating parts of a 3D
scene, opening many applications across robotics and AR.
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/.1  Future work

To conclude this thesis, there are many aspects of important future work which we
would like to highlight. As is typical with any research, this thesis raises more ques-
tions than answers. Improvements to the individual algorithms have been discussed
within the body of this work. However, at a high level, we would like to highlight the
following themes for future research which are particularly exciting.

Uncertainties in Multiview Stereo. In Nerfbusters, we learn a probabilistic
model for local 3D shapes, however, the focus was more on improving the geom-
etry and removing artifacts than measuring the uncertainty of the reconstruction.
We believe that quantifying the uncertainties in NeRF and implicit surface-based
representations is an interesting direction with applications in active reconstruction
[Pan+22], e.g. to guide a robot that is mapping an environment to where to collect im-
ages, or in physical simulations, where one wishes to reason about the uncertainty of
a reconstruction. The Laplace approximation is an obvious candidate for quantifying
the uncertainty of such implicit reconstruction. Very recently, Bayes Rays [Gol+23]
showed that posthoc Laplace approximation for a NeRF yields a good measure of
uncertainty. Using these uncertainties to improve the reconstruction, e.g. explore
multiple hypotheses, or propagate the uncertainties to downstream applications will
be very valuable.

System rather than parts. While this thesis has explored many of the core tech-
nologies of the reconstruction pipeline, it has explored each part of the system in-
dividually. This has led to a focus on output uncertainties. However, in practice,
we believe input uncertainties are most interesting. These are uncertainties that are
propagated through a system and can be used to avoid failures. We believe that com-
bining the methods presented for each step into a single probabilistic 3D pipeline that
propagates uncertainties throughout the pipeline would show the benefits of reason-
ing about uncertainties, reducing silent failures, and improving retrieval, localization,
reconstruction, and manipulation.
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