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Abstract

Major railway lines need advanced management systems based on accurate maps of their infrastructure.
Asset detection is an important tool towards automation of processes and improved decision support
on such systems. Due to the lack of available data, limited research exists investigating railway asset
detection despite the rise of Artificial Neural Networks and the extensive research on autonomous driving.
In this project, we adapt the Faster R-CNN model to detect signs and signals in an annotated Railroad
dataset from COWI. Through extensive experimental work, we find that modifying the model based
on both prior knowledge about object sizes and the inclusion of the Focal Loss, improves the model
performance. We further adapt the Struct2depth model to estimate a dense depth map for each frame
in a subset of the Railroad dataset. As a proof-of-concept, we demonstrated that the inferred depth maps
can be used to obtain 3D information about the detected railroad furniture.
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Chapter 1

Introduction

1.1 Introduction

Major railway lines are assembled over centuries. They are build iteratively, which means that the place-
ment of railroad furniture are exposed to deliberate modifications. Moreover, these railroad furniture can
also be damaged by external conditions, such as the weather. Because of the sheer size of these railway
lines, it has become very expensive to manually maintain an up-to-date map of the railroad infrastructure,
including the position of each railroad furniture. Asset detection is an important tool towards automation
of these processes. Moreover, asset detection can potentially improve the quality and refreshment rate
of the infrastructural map, which may lead to improved safety and decision support for such systems.
Limited research exists on asset detection for railway data despite the rise of Artificial Neural Networks
and the extensive research on autonomous driving. This is mainly because there does not exist a publicly
available annotated dataset for railroad sequences.

The North European consulting group, COWI, has collected and annotated numerous railroad video
sequences from Queensland, Australia. This project will investigate these images and apply state-of-the-
art convolutional neural networks to detect the railroad furniture and estimate their 3D positions.

1.1.1 Motivation
The 3D position of railroad furniture (including signs and signals) is very relevant for COWI since knowing
the position can reduce the cost of maintenance and manual labor – as an up-to-date map can automat-
ically and frequently be collected. Moreover, such a map can reduce the risk of accidents as the train
driver can be supported by smart systems that are able to track and detect the railroad furniture or
match the position of railroad furniture with the train’s current position.

This project seeks to estimate the 3D position of railroad furniture. The project consists of two parts:

• Adapt and train a 2D object detection model - that takes an image as input and outputs a 2D
bounding box together with class label for each object of interest in the image - for the entire
Railroad dataset. Evaluate the performance of the trained model and investigate the causes of
errors.

• Estimation of a dense depth map that allow COWI to measure the 3D positions of the detected
objects. Adapt a model to infer depth predictions based on sequences of images and demonstrate
how this depth information can be used to obtain 3D information about the detected objects.
Evaluate the performance of the depth estimations.

2



Computer Vision in Railroad Asset Detection

1.1.2 Overview
The project is divided into two parts; where the first part addresses 2D object detection and the second
part dense depth estimation.

The first part is structured as follows: Section 2.1 presents an overview of popular object detectors.
Based on this initial research, it is decided to adapt the Faster R-CNN model for detection of railroad
furniture. In Section 2.2, this model and its predecessors are explained in more detail, together with ar-
chitectural alterations of the model. Section 2.3 provides an descriptive analysis of the Railroad dataset
collected by COWI. It has been necessary to limit the amount of data to keep the scope of the project
manageable. Based on the descriptive analysis, several design choices that decrease the amount of data
and prepare the data for the training and testing are explained in Section 2.4. The Faster R-CNN is
adapted to the Railroad data and several experiments are carried out and described in Section 2.5. In Sec-
tion 2.6, the results from these experiments are reported. The main points are summarized in Section 2.7.

The second part of the report follows a similar structure. Section 3.1 and Section 3.2 describe related work
and give an in-depth explanation of the state-of-the-art deep learning based depth estimators. Section
3.3 and Section 3.4 describe how the chosen depth estimator, struct2depth, is adapted to the Railroad
data. This includes a description on how the intrinsic camera parameters have been reverse-engineered
and how segmentation masks have been obtained. The experimental setups are described in Section 3.5.
The results are analyzed in Section 3.6 and concluded upon in Section 3.7.

The overall applicability of the presented results for COWI is discussed in Section 4.1, together with
suggested future work. Section 4.2 present the overall conclusion on the project.

1.1.3 Pre-requisites
It is assumed that the reader has a solid mathematical and statistical understanding. Moreover, the
reader must have a basic knowledge about both Artificial Neural Networks and Computer Vision, e.g.
Epipolar Geometry. However, it is not assumed that the reader has prior knowledge or experience with
the specific task of object detection nor of depth estimation as was the case when I began this project.
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Chapter 2

2D Object Detection

The goal of 2D object detection is to assign a bounding box and a label to each object of interest in
an image. The bounding box is usually represented by (x, y, w, h) indicating a parameterization of the
bounding box where (x, y) is the center of the box, w, h are the width and height of the box. The size
of the bounding box should be minimized, however it must contain the entire object. This chapter will
outline the landscape of object detectors. An object detector will be adapted to the Railroad datasets,
which are used to to generate results obtained from an extensive experimental work. Finally, the accuracy
of these results are analyzed.

2.1 Related work

The first object detectors were based on handcrafted features such as SIFT and HOG[2], [7], [45]. How-
ever, the recent research on object detection has shown that features learned by deep neural networks
outperform the traditional handcrafted features, in particular for drastic appearance changes. These
deep learning-based object detectors can be divided into two groups: one-stage detectors, which do not
use regional proposals, and two-stage detectors, which do use regional proposals. This section seeks to
provide an overview of some of the most popular object detectors within these categories.

Two-stage methods
The two-stage methods are characterized by first localizing several region proposals and then classifying
which region belongs to each class. A characteristic with these regional proposal-based models is that they
forward a varying number of region proposals through a Convolutional Neural Network (CNN). Among
the most well known object detector belonging to this category is the Regional CNN (R-CNN)[12]. Gir-
shick et al. presented this object detector, which first generates category independent region proposals
using selective search, and then uses a pre-trained CNN to compute convolutional features for each region
proposals. These features are used to classify each regional proposal using a one-to-many linear Support
Vector Machine (SVM)[1]. Girshick later suggested Fast R-CNN[17] - a faster and more accurate object
detector. This detector largely builds on the same ideas as R-CNN, however Girshick unified the three
steps of R-CNN, which enables online training and the use of deeper pre-trained networks. Lately, another
improvement to the R-CNN has been presented - namely the use of a Region Proposal Network (RPN)[46].
Yicheng et al. showed how the RPN could replace selective search for the Fast R-CNN detector. They
named this improvement of Fast-RCNN for Faster R-CNN because of its increased speed. Faster R-
CNN has become a popular and widely used object detector that currently - or variations of it as [27],
[39] - is among the best performing object detectors on popular datasets for object detection[15], [43], [44].

One variation of Faster R-CNN is the Region-based Fully Convolutional Networks (R-FCN)[27] that
enables full sharing of convolutional weights. This variation presents significant speed-up compared to
Faster R-CNN while still achieves competitive results. Also, this variation enables full sharing of weights
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by introducing position-sensitive score maps to better recognize the different parts of objects. The
intuition behind these position-sensitive score maps is that by recognizing a part of an object (this could
be an eye), we know the position of the object (the face). By calculating these score maps on the entire
image allows the model to share information between the region proposals.

One-stage methods
The other group of object detectors is the one-stage methods, where a network is trained end-to-end to
do both the localization and the classification. They are characterized by a fixed number of bounding
boxes that are fed through an CNN. These networks must be trained end-to-end and outputs both a
confidence estimate for each bounding box and a class distribution. These methods are in general faster
than the region proposal methods, but often less accurate.

The first one-stage objector was You-Only-Look-Once (YOLO)[23]. The YOLO detector works by divid-
ing the input image into a S⇥S grid, where S is the number of grid cells in each direction. For each cell,
B bounding boxes are predicted - each with a confidence score that describes how well an bounding box
includes an object - and a class distribution that describes the probability of that bounding box belonging
to each of the given classes. This means that YOLO outputs S ⇥ S ⇥ B bounding box predictions each
of size C ⇥ 5, where C is the number of classes and 5 is the number of parameters used in the param-
eterization of the bounding boxes. Since the release of YOLO, several architectural improvements have
been proposed; first in YOLOv2[31] and recently in YOLOv3[41], which both improves the accuracy of
the detector without compromising too much with the speed. The YOLO approach has become popular
for object detection because it is very fast.

SSD presented in [20] is in many ways similar to YOLO. It uses a single deep neural network for the
object localization and classification. Differently from YOLO, SSD uses a feature pyramid architecture
that gradually reduces the spatial dimension and resolution of the image using convolutions. This feature
pyramid helps discover objects at different scale spaces. For each feature pyramid, SSD detects objects
using a set of default bounding boxes that have different ratios between height and width. The feature
pyramid increases the capability of the model to detect different sized objects at the cost of computational
speed.

Lin et al. found that one reason that the two-stage algorithms generally achieves higher accuracy than
one-stage algorithms, is the extreme foreground-background class imbalance in one-stage algorithms,
which is caused by the fixed number of regions forward through the network. This class imbalance makes
the one-stage algorithms predisposed to classify a region as a well represented class, such as the back-
ground. They presented RetinaNet[34], an extension of SSD, that uses a Focal Loss that down-weights
the loss assigned to the well-classified examples. This resulted in an object detector that achieved state-
of-the-art accuracy and matched the speed of one-stage detectors.

In general, choosing between these two types of models is a trade-off between speed and accuracy, where
detection methods that use regional proposals usually are much slower, but more accurate than the one
stage methods. For this project, it has been chosen to adapt the two stage method, Faster R-CNN, to
the task of detecting railroad furniture. A two-stage method is chosen because COWI is more interested
in high accuracy than in real-time performance. Furthermore, it is accessed easier to incorporate the
time and/or spacial information, which is evidently available in videos, into these networks as the task
of detection is divided into two sub-tasks. Faster R-CNN is chosen since it achieves high performance,
is richly documented by the community, and there exist several excellent Pytorch[37] implementations.
Furthermore, from a learning perspective Faster R-CNN is a good starting point as it is base for many
newer network architectures. Thus, a good understanding of this model is useful for working with other
two-stage object detectors.
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2.2 Theory

As mentioned Faster R-CNN largely builds on top of its predecessor R-CNN and Fast R-CNN. Thus, the
purpose of this section is to give an in-depth explanation of the R-CNN trilogy in chronological order.

2.2.1 R-CNN
In [12], Girshick et al. present two key insights that laid the groundwork for modern object detectors;
CNNs can be used for region proposals and pre-trained networks yield significant performance boost for
object detection. These insights are incorporated into the R-CNN.

The R-CNN consists of two stages; localization and classification. Figure 2.1 gives an highlevel overview
of the model.

Figure 2.1: An overview of R-CNN [12]. Step 2 shows the region proposals found by selective search.
Between step 2 and 3, the simple warping is used to fix the size of the Region of Interest (RoI). In step 3
the warped region is fed through a CNN. Step 4 uses a one-to-many SVM to calculate the probabilities
of the object belonging to each class.

Localization The first step of R-CNN is to generate category independent region-proposals (Step 2 in
Figure 2.1). The region proposals are generated using the selective search algorithm. Selective search
works by recursively combining small pixel regions based on these regions’ color, texture, size and shape
similarities. The algorithm stops when a pre-defined number of regions is reached. At test time, the
R-CNN generates around 2000 different sized region proposals for each input image. This method is
rather inefficient and not trainable.

Classification In order to deal with the varying sizes of the region proposals, their sizes are fixed
by a simple wrapping (Step 3 in Figure 2.1). The resized regions are fed into a CNN that outputs a
4096-dimensional feature vector (Step 4 in Figure 2.1). The chosen CNN is pre-trained for classification
and during training fine-tuned to boost performance for the given detection task. The 4096-dimensional
feature vector is fed into a set of category-specific Support Vector Machines (SVMs). This one-to-many
SVM provides a confidence score for each region proposal for each class (Step 4 in Figure). Finally, non-
maximum suppression is then used to remove the overlapping regions that have the lowest confidence
scores.
In order to further boost the performance of R-CNN, a linear regression model is trained to predict a new
region proposal given the features of the last pooling layer from the CNN and the original region proposal.

The bottleneck of R-CNN is that the 2000 region proposals discovered by selective search are individually
fed through a CNN and then examined by a SVM. Thus, overlapping region proposals are examined
more than once and do not share any information. This makes R-CNN very slow and infeasible for online
end-to-end training due to very high memory requirements.
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2.2.2 Fast R-CNN
Fast R-CNN is an improvement of R-CNN. The main idea is the same, however it is significantly faster
and less memory demanding than R-CNN. It has a 9⇥ faster training time, a 213⇥ faster test-time and
achieves a higher accuracy[17]. In this subsection, we will focus on the changes from R-CNN to Fast
R-CNN.

Figure 2.2: Fast R-CNN overview [17]. Both the image and the RoI are fed to a deep convolutional
network. The RoI are projected onto the the feature map of this network, which are then resized using
the RoI pooling layer. The network splits into two sibling layers that predicts respectively the class
probability and the bounding box location for the given RoI projections.

Architectural changes Girshick identified that R-CNN was slow because the CNN had to calculate
a feature vector for each region proposal - even though many of these were overlapping and thus shared
information. To circumvent this bottleneck, the CNN in Fast R-CNN takes the entire image and the
generated region proposals as input (See Figure 2.2). This means that the input image is processed only
once. A pre-trained CNN (e.g. ResNet101 or VGG19) is used to generate a convolutional feature map;
that is the features of the last convolutional layer in the pre-trained network. For each of the input region
proposals, a Region of Interest (RoI) pooling layer is used to extract a fixed length feature vector from
the feature map.

In Fast R-CNN, RoI pooling layers are used to fix the size of the region proposal. Thus, the RoI replaces
the simple wrappings that was used in R-CNN. RoI pooling layers works by dividing a h⇥w sized region
proposal into h/H⇥w/W sub windows, where H and W are chosen such that the output of the RoI layer
is compatible with the input size of the subsequently fully connected layers. Max pooling is performed
on each of the generated sub windows as shown in Figure 2.3.

Figure 2.3: Shows an example of RoI pooling. In this example the size of the RoI is H ⇥ W = 4 ⇥ 6

and we wish to reduce the dimensions to h ⇥ w = 2 ⇥ 2. Thus, we divide the RoI into H
h ⇥ W

w = 2 ⇥ 3

sized sub windows (indicated by red square). We perform max pooling on this sub window to reduce its
dimension to 1⇥ 1 cell.

Thus, the RoI pooling layer fixes the sizes of each region proposal such that they can easily be fed through
a fully connected layer to generate a RoI feature vector. The network then branches out into a sibling
layer; one produces a softmax probability for belonging to each class, the other produces a (x, y, w, h)
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Figure 2.4: Shows the smoothL1 loss used in Equation 2.3.

parametrization for the bounding box. Thus, the output size of the classification layer will be the num-
ber of classes and the output size of the regression layer will be the number of anchors times 4. This
softmax probability layer replaces the set of linear SVMs. The softmax probability is convenient because
the feature vector only needs to be fed through this layer once to produce a probability of belonging to
each class compared to the one-vs-rest SVM approach in R-CNN, where the feature vector had to be fed
through as many SVMs as there were classes.

By imposing these architectural changes, Girshick was able to unify the three individual parts of R-CNN
into one network, which enable online end-to-end training of the model. The fact that the CNN operates
on the input image and not on every region proposal significantly increases the speed of the localization as
the region proposals can share weights. This increase in speed enables use of deeper, pre-trained networks
such as VGG19 and ResNet101, which provides a performance boost of the model compared to R-CNN.

Loss Function Since Fast R-CNN uses a sibling layer that outputs respectively a bounding box pre-
diction and an object probability, it is necessary to use a multi-loss function that consists of two parts;
one for classification and one for localization.

L = Lcls + Lloc (2.1)
The classification loss penalizes wrong classifications and the bounding box regression loss penalizes
erroneous placements of the bounding boxes. The two loss functions are normalized such that their
magnitudes become equal. The classification loss is the Cross Entropy, which is given by

Lcls = �
X

i

yclsi log ŷclsi (2.2)

where yclsi is 1 for the true class and 0 otherwise and ŷclsi is the prediction probability for belonging to
class i. Note that only when yi = 1 there will be a loss, meaning that the CE only penalizes for the true
class. The bounding box regression loss is given as

Lloc =

X

i2{x,y,w,h}

SmoothL1(ŷ
reg
i � yregi ) (2.3)

where yregi and ŷregi are respectively the ground truth and the predicted parameter for the bounding
boxes where i runs over all 4 parameters in the parametrization of the bounding box. The smoothL1 is a
norm that is parallel to the L1-norm, however in the range close to 0 it behaves smooth like the L2-norm
(Figure 2.4). This norm is chosen because it will care less about very small offsets of the bounding box
predictions than the L1, but it is more robust towards outliers than the L2 norm.

2.2.3 Faster RCNN
The bottleneck in Fast RCNN is the selective search algorithm, which was used for generating region
proposals. In [24], Ren et al. introduced Region Proposal Networks (RPNs) as a alternative to selective
search. The RPNs were faster and trainable. Ren et al. showed that a RPN can be used as an attention
mechanism for Fast R-CNN. This attention mechanism decreased the number of processed region pro-
posals; improving both speed and accuracy. In the following RPN will be explained as well as how RPN
works as an attention mechanism for Fast R-CNN.
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Region Proposal Networks (RPN) A RPN takes a feature map of an image as input and creates
as output a region proposal and an object score. It works by applying a sliding window on the inputted
feature map. Each sliding window is fed through a small fully connected network that calculates a low
dimensional feature vector. This feature vector is forwarded into a sibling layer; a box regression layer
and a box classification layer - similar to the ones used in Fast-RCNN. As opposed to the classification
layer in the Fast R-CNN detector, the classification in RPN provides an object score that describes the
probability that the region proposal includes an object.

The RPN generates multiple region proposals per sliding window. Each of these region proposals are
parametrized by four coordinates relative to an anchor. An anchor is defined by a center and a shape. In
RPN, there is an anchor for each sliding window. Each anchor has a pre-defined size and aspect ratio that
enables detection of overlapping objects. Thus, if three aspect ratios and three scales are pre-defined, we
will have nine different anchors at each sliding window position. The RPN will provide a regression and
an object score for each of these nine anchors.

Figure 2.5: Faster R-CNN overview [24]. The image is fed through a deep convolutional network to
calculate a feature map. The RPN finds regional proposals based on this feature map. These regions and
the feature map are fed through the Fast R-CNN detector, which outputs bounding box predictions.

Architecture changes The Faster R-CNN consists of two stages; first, the input image is fed through
a pre-trained CNN to generate a feature map (Figure 2.5). The RPN uses this feature map to generate
several region proposals. Then, the feature map and these region proposals are fed into the Fast R-CNN
detector. Thus, the main difference between Fast R-CNN and Faster R-CNN is that the selective search
algorithm is replaced by the RPN. Note that because RPN and the Fast R-CNN detector operates on
the same feature map, they can share weights (See Figure 2.5).

Loss Function Like Fast R-CNN, RPN is trained with the multi-loss function presented in Equation
2.1. As opposed to the classification loss in Fast R-CNN, the classification in RPN is binary and describes
whether or not an object is present within a region proposal. In order for end-to-end training of Faster
R-CNN the loss is set as the sum of the RPN loss and the Fast R-CNN loss.

L
Faster

= L
RPN

+ L
Fast

= (LRPN

cls

+ LRPN

reg

) + (LFast

cls

+ LFast

reg

) (2.4)

where both L
Faster

is the loss function for Faster R-CNN and LRPN and LFast are both multi-loss func-
tions described by Equation 2.1 for respectively the RPN and the Fast R-CNN detector. The magnitude
of the individual loss functions are scaled to equal their importance.

As mentioned in Section 2.1, the Focal Loss is an alternative the the Cross Entropy. The Focal Loss
greatly improves the performance of one stage models. Therefore, it is of interest how well it would
integrate with a two stage method.
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2.2.4 Focal Loss
The Focal Loss [34] was originally designed to handle the huge imbalance between foreground and back-
ground objects in one-stage methods. This section gives a mathematical formulation of the Focal Loss
and describes how this loss function can be incorporated into Faster R-CNN.

The intuition of the Focal Loss is to down-weight easy examples and thus focus training on hard negatives.
Thus, we wish to put more weight on classes that are poorly represented (in practice this is the case for
all foreground objects). This is done by multiplying the commonly used Cross Entropy (CE) with a
modulation factor (1� pt)

� where pt is the probability of belonging to class t and � is a tunable focusing
parameter that decides how much focus should be put on hard examples. Thus, we can write the Focal
Loss FL as

FL (pt) = � (1� pt)
�
log (pt) (2.5)

Figure 2.6 shows the Focal Loss for different values of �. Note that the Focal Loss is equal to the Cross
Entropy for � = 0. The authors [34] have through experimental work found that � = 2 works well.

Figure 2.6: Shows the Focal Loss for different choices of � [34].

From Figure 2.6, it is seen that by increasing � less emphasis is put on well-classified examples. A numeric
comparison between the Cross Entropy and the Focal Loss for � = 2 is constructed to show the difference
for well-classified and not well-classified examples.

For well-classified examples we have

CE (pt = 0.9) = 0.1

FL (pt = 0.9) = 0.01
(2.6)

Whereas for not well-classified examples we have

CE (pt = 0.1) = 2.3

FL (pt = 0.1) = 2.1
(2.7)

From Equation 2.6 and 2.7, it is seen that the Cross Entropy will penalize a poorly classified example
2.3/0.1 = 23 times more than a well-classified example, whereas the Focal Loss will penalize a poorly
classified example 2.1/0.01 = 210 times more than a well-classified example. Thus, the Focal Loss puts
more focus on hard examples.

Even though the class imbalance between foreground and background is not as extreme in two-stage
methods as in one-stage methods, there is still a huge imbalance. In Faster R-CNN, the Focal Loss can
directly replace the Cross Entropy in both the RPN and Fast R-CNN detector (Equation 2.4).
This section has explained the theory behind the experiments, which will later be performed on the
Railroad data. The next sections will describe the dataset and explain how the experiments are executed.
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2.3 Descriptive Analysis

This section provides an overview and description of the train journey dataset. Based on summary
statistics, prior knowledge is obtained and data prepossessing choices are made.

2.3.1 Summary statistics
The dataset consists of 47, 909 panoramic images from a train journey in Queensland, Australia. The
resolution of the images is 5400⇥ 1957 and the field of view (FOV) is 360 degrees. Figure 2.7 shows an
image example from the train journey sequence.

Figure 2.7: An example of a panoramic image from the train journey sequence. 7 signs with red bounding
boxes are located in the image. Are you able to find them?

The panoramic images are constructed by an unknown cylindrical or spherical projection of multiple
images. From Figure 2.7 it is seen that this projection has severely distorted the area of the image to the
left and right side of the tracks, while the area close to the train tracks’ vanishing points (in both the
front and rear direction) remains undistorted.

The railroad furniture along the train journey have manually been annotated with both bounding boxes
and class labels (some bounding boxes are seen in Figure 2.7). There are 121, 528 annotated bounding
boxes in the dataset. Each bounding box is assigned to one of 25 class labels. The class labels are
explained in Table 2.1 and sorted after their number of occurrences.

Id Description Occurrences Id Description Occurrences
141 Signals with four lamps, Front view 21987 210 Position lights with two white lamps and one red 2022
310 Standard speed sign 16093 250 Back view of any of the above Position lights 1977
131 Signals with three lamps, Front view 12442 330 Diverging right speed sign 1906
370 Back view of any of the above circular signs 9889 112 Signals with one lamp, Side view 1834
150 Back view of signals 9763 142 Signals with four lamps, Side view 1546
400 Signal number Sign 9526 220 Position lights with only two white lamps 1452
160 Other signals 9144 350 Speed train unit sign 1241
111 Signals with one lamp, Front view 4363 390 The back view of any of the above rectangular signs 1082
121 Signals with two lamps, Front view 3627 240 Side view of any of the above Position lights 1011
320 Diverging left speed sign 2932 132 Signals with three lamps, Side view 411
122 Signals with two lamps, Side view 2722 340 Diverging left-right speed sign 352
360 Other Speed signs 2103 230 Position lights with only two white lamps and a C letter 38
380 Back view of diamond signs 2065

Table 2.1: Description and frequency of every class label (Id) in the dataset.
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From Table 2.1 it is seen that some of the descriptions are very similar which might lead to erroneous
manual annotation. It is also seen that some class labels are very rare e.g. class label 230 with only 38

occurrences in the entire dataset.

As an example, Figure 2.8 shows 6 crops of annotated speed signs. It is seen that the size, quality, and
aspect ratios of these signs vary. Furthermore, it is seen that the bounding boxes are sometimes tightly
fitted and other times more loosely fitted.

Figure 2.8: 6 crops of annotated speed signs are shown.

By investigating the size of the annotated bounding boxes, we find that most signs appear very small,
however few, large bounding boxes exists. The distribution of the area of the bounding boxes is shown in
Figure 2.9a. The biggest bounding box covers more than 20% of the full panoramic view. After manual
inspection, it is found that this is a erroneous annotation, and therefore, it is decided only to consider
bounding boxes with an area less than a 180

2 pixels. We look at the distribution of the area of annotated
bounding boxes with an area less than 180

2 pixels (⇡ 0.3% of the full panoramic view), which accounts
for more than 99% of the annotations (see Figure 2.9b).

(a) All data (b) 99% of data

Figure 2.9: Distribution of area of annotated bounding boxes.

From Figure 2.9 we see that most bounding boxes are small. We choose this threshold as it still accounts
for 99% of the data. We find that the median area is 868 ⇡ 30 ⇥ 30 pixels. This is significantly smaller
than median size of bounding boxes in most other object detection dataset [16], [43], [44]. This informa-
tion will in Section 2.5 be used for modelling the anchor sizes for Faster R-CNN and evaluation purposes
in Section 2.6.

We investigate the aspect ratios of the signs and signals in Figure 2.10. The figure shows the distribution
of the aspect ratios obtained by dividing the height with the width of the bounding boxes.
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(a) All data (b) 99% of data

Figure 2.10: Shows a distribution of the aspect ratios of the bounding boxes obtained by dividing the
height with the width.

Again, we can describe more than 99% of the data by using a smaller interval. Figure 2.10b, it is seen
that distribution of the aspect ratio have two peaks at respectively 1.0 - indicating quadratic bounding
boxes - and 1.6. We will also use this prior knowledge to model the anchors in Section 2.5.

As the train’s movement and the position of the railroad furniture are constrained by the train tracks,
it is expected that the positions of the signs will be similar within most frames. To investigate this we
create two contour plots. Figure 2.11 is a binary contour plot showing where the center positions of the
bounding boxes have been observed. Figure 2.12 shows a heat map on top of an panoramic image. The
heat map describes the density of observed bounding boxes across all panoramic images.

Figure 2.11: A binary map showing were the center coordinate of the annotated bounding boxes appeared
across the entire dataset.

Figure 2.12: Heat map of density of annotated bounding boxes.
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From Figure 2.11 it is seen that the positions of the centers of the bounding boxes follow the distortion
field - closely gathered at the vanishing points and sparsely distributed in between the vanishing points.
The heat map (Figure 2.12) shows that the density of observed railroad furniture is highest at the van-
ishing points of the tracks. This makes sense since railroad furniture at these locations are further away
and thus their position in the image will change less between frames. This will make them appear in
more similar positions over multiple frames.

In this section we have provided an overview of the data. We have further investigated the annotations.
We found that some class labels are very rare, which will make learning difficult for these classes. We
found that most bounding boxes are small and the median area is 30⇥ 30 pixels. We decided to remove
all bounding boxes with an area more than 180

2 as these outliers are expected to be erroneous. We found
the distribution of aspect ratios of the bounding boxes have a peak at 1.0 and 1.6. This prior knowledge
about the bounding boxes can be used for fine turning the anchors in Faster R-CNN. Finally, we looked
at the image positions of the bounding boxes. It was found that the centers of the bounding boxes are
positioned along the field of distortion and that the density of bounding boxes is significantly higher at
the vanishing points in both the front and rear direction.

2.4 Design choices

Training and testing on the entire dataset would take a very long time and is therefore outside the scope
of this project. Consequently, it is chosen to decrease the size of the dataset such that more focus can
be allocated to the implementation, evaluation and reportation. This section describes how the dataset
is limited and prepared for training and testing the models.

2.4.1 Data limitation
The following procedure is implemented to reduce the size of the dataset.

Image classes The 25 classes have been reduced to 2 classes: Signs1 and signals2. These two new
classes have approximately the same size, thus the challenges with of a screwed class distribution is
avoided.

Image size Instead of working with the full panoramic images, it is chosen only to use one 500⇥ 800

crop per image. This crop is taken from the center of the panoramic image where the distortion is small.
Only bounding boxes, which are at least 1/4 inside this crop are considered. Bounding boxes that are
located on the boundary of the cropped image are also cropped (See Figure 2.13).

2.4.2 Train, validation and test set division
In order to test a model and avoid overfitting, it is common practice to divide a dataset into a training,
validation and test set. The model should be trained on the training set and hyper-parameter fine-tuning
performed on the validation set. Finally, when a model has been decided, it should be trained on both
the training and validation data and evaluated on an independent test set. As the test set is used to
check the generalization of the model, it is important that the training and test set are independent. In
the following part we will describe how the data is divided into a trainval (consisting of both training and
validation set) and a test set. Appendix A.1 verifies that consecutive frames are correlated. Therefore,
training and test set division must be handed with care.

1Sign ids from Table 2.1: 310, 370, 400, 320, 360, 380, 330, 350, 390, 340.
2Signal ids from Table 2.1: 141, 131, 150, 160, 111, 121, 122, 210, 250, 112, 142, 220, 240, 132, 340, 230.
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Figure 2.13: Shows an image crop of 500⇥ 800 pixels taken from the center of the panoramic image. The
red bounding boxes show the used bounding boxes. The green bounding box shows the original bounding
box. From this figure it is seen that one bounding box has be cropped. The choice of crop means that
we do not have to deal with the distortion observed in Figure 2.7.

Trainval and test division

As described in Appendix A.1, the frames in the video sequence are correlated in both time and space.
E.g. if we have observed a stop sign in image i we will probably observe a scaled version of the same
sign in image i + 1 as seen in Figure 2.14. Especially, in our dataset this might cause a big problem as
the train is sometimes stopped, thus two objects can appear extremely similar in two consecutive frames
(Figure 2.14).

(a) Image i� 1 (b) Image i (c) Image i+ 1

Figure 2.14: Shows 3 consecutive frames. From this short sequence, it is easy to observe that the frames
and the position of the bounding boxes are correlated over time. Thus, it would not be appropriate to
put image i � 1 and i + 1 in the trainval set and image i in the test set, because then trainval and test
set would be correlated.

Based on the observed correlation between consecutive frames, it is chosen to divide the first part of the
data into trainval set and the second part of the data into a test set. The trainval set and test set are
separated by more than 2000 frames, and should therefore not be correlated in neither time nor space.
The trainval -test division is illustrated in Figure 2.15 with a green and red bar under the x-axis.

In order to verify that the last frame in the training set and the first image in the test set are indeed
uncorrelated, we show the two images in Figure 2.16.

From visual inspection of both the trainval and test set it is seen that they do not have a spatial
overlap and thus should be uncorrelated in both time and space. Furthermore, it is found that the
test set consists of a challenging environment with several tunnels, moving objects and drastic light
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Figure 2.15: Shows the number of frames that are between the cropped image with annotations. The
red and the green bars at the bottom indicate the portion of data used as respectively training and test
set. It was found with manual inspection that the longer intervals without any railroad furniture were
because the train has stopped or drove through a tunnel.

Figure 2.16: Shows the last frame in the training set and the first frame in the test set. As seen these
images have little in common. To the left is image 12396 and to the right is image 12397. There are 2192

frames between the two frames, thus neither spacial nor time dependency.

changes that makes it representative for testing the generalization capabilities of the model. The test
set consists of 1149 signs and 1693 signals of varying sizes. However, one must note that the test set
only tests the generalization capabilities for Queensland-like urban environment. In order to evaluate
generalization capabilities beyond this environment, a railroad sequence from different a different city,
season or country should be recorded and annotated. Annotations of signs and signals appearing in the
Nordland[13] dataset would provide this.

Validation and training division

For training and validation purposes, we only consider images that contain at least one annotation.
These images have information about both the appearances of the objects and the background, whereas
the images without annotations only have information about the background. This limits the size of
the trainval set to 12, 396 images. By random sampling we divide the trainval set into a training and
validation set of respectively 90% and 10% of the data.
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2.5 Experiments

A Faster R-CNN implementation3 was adapted to the railroad dataset. In this section we describe the
five performed experiments.

Johnson et al.4 made a thorough analysis on the performance of various CNNs. They found that ResNet
performance was better than VGG in both computational time and accuracy for classification tasks. This
is because ResNet is deeper, which is acheived through skip connection in the model architecture[19]. Fur-
thermore, the Yang, who has implemented a Pytorch version of Faster-RCNN that we have adapted, also
reports a significantly higher mAP by using ResNet101 than VGG16 on various datasets without too
much increase in the computational time. Based on these findings, it is chosen only to consider the
ResNet101 base network in all experiments.

To avoid overfitting, data augmentation has also been imposed in all experiments. The images are mir-
rored in their vertical axis such that we double the amount of annotated images. This data augmentation
will hopefully learn the model invariance towards which side of the tracks the railroad furniture appear.
If each of the original 25 classes were treated separately, it would not be recommended to mirror the
images as useful information about, which side of the tracks the railroad furniture were located would
be lost. However, as the categories are collapsed into just 2 (signs and signals) where there is no general
information about the location of the objects, it is not expected that we will lose any information by
mirroring the images.

Experiment 1 In this experiment, the default parameters from the implementation were used. The
purpose of this model was to serve as a baseline for the latter experiments.

Experiment 2 Next, reduced the anchor scales to fit the prior knowledge obtained in Section 2.3. We
also increased the learning decay, such that the learning rate was reduced every 10th epoch instead of
every 4th. We did this because, the default implementation only trained for 10 epochs on a larger dataset,
and as we train for 30 epochs on a smaller dataset, the learning rate should be updated less frequently.

Experiment 3 We replicated experiment 2, but reduced the number of anchor ratios. The anchor
ratios were also based on prior knowledge obtained in Section 2.3.

Experiment 4 We tested experiment 2 with the Focal Loss with � = 2.

Experiment 5 We tested experiment 3 with the Focal Loss with � = 2.

All hyper parameters for the experiments are listed in Table 2.2. For better comparison between the
performed experiments, we only vary one hyper parameters per experiment. In these experiments, the
anchor scales and aspect ratios have been changed based on prior knowledge about the bounding boxes
sizes (Figure 2.9b) and aspect ratios (Figure 2.10b). In this regard, it is important to note that the
anchors are found on a feature map that is 1/16 of the original image size, thus the scales should be
multiplied by 16 to get the pixel sizes of the anchors.

Experiment 2 and 3 are replicated with the Focal Loss (FL) instead of the Cross Entropy (CE). A Focal
Loss implementation5 was adapted to the Faster R-CNN loss function. Both Experiment 4 and 5 use a
Focal Loss with � = 2.

Table 2.3 shows the training time for 30 epochs on a Nvidia Titan X. From the table, it is seen that
small anchors increase the time to process an image, since it takes more windows to cover the feature

3Pytorch implementation of Faster-RCNN: https://github.com/jwyang/faster-rcnn.pytorch
4Benchmarks on popular CNNs: https://github.com/jcjohnson/cnn-benchmarks
5Focal Loss implementation: https://github.com/clcarwin/focal_loss_pytorch
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Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Base network resnet101 resnet101 resnet101 resnet101 resnet101
Batch size 1 1 1 1 1

Epochs 30 30 30 30 30

Learning rate 10

�4
10

�4
10

�4
10

�4
10

�4

Learning decay 4 10 10 10 10

Anchor ratios 0.5, 1, 2 0.5, 1, 2 1, 1.5 0.5, 1, 2 1, 1.5
Anchor scales 8, 16, 32 1.25, 2.5, 5 1.25, 2.5, 5 1.25, 2.5, 5 1.25, 2.5, 5
Loss function CE CE CE FL FL
Optimizer SGD SGD SGD SGD SGD

Table 2.2: Hyper parameters and configurations. The bold numbers indicate which hyper parameters
have been altered from the previous experiment. Note that a small batch size has been chosen across all
experiments due to memory issues.

map (difference between Experiment 1 and 2). In Experiment 3, we only use 6 anchors, thus even though
these are smaller than Experiment 1, the time to process the image is decreased.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Hours 55.55 75.57 52.98 76.05 55.48

Table 2.3: The training time for 30 epochs in hours on a Nvidia Titan X. Note that reducing the number
of anchors and their sizes have a huge impact on the training time.

2.6 Results

The experiments are evaluated on several metrics (Appendix A.2) for better understanding of the er-
rors. Videos showing the results are available at https://www.dropbox.com/sh/31haxfnn7c807f7/
AAAui9ItaPF0Tn7t77bFmVcUa?dl=0. During the test sequence the train passes 1149 signs and 1693 sig-
nals of varying sizes.

Table 2.4 shows the Average Precision (AP) for both classes and the mean AP (mAP) for each experi-
ment of the five experiments described in Section 2.5. For an explanation of AP and mAP please consult
Appendix A.2.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
AP

signal

0.496 0.581 0.552 0.666 0.601
AP

sign

0.534 0.610 0.588 0.562 0.479
mAP 0.515 0.595 0.570 0.614 0.540

Table 2.4: The Average Precision (AP) for both classes and the mean Average Precision (mAP) for the
experiments. See Section 2.5 for explanation of the different experiments.

From Table 2.4 we see that experiment 4 has the highest mAP. It is seen that both Model 2 and 3
perform better than Model 1, thus decreasing the anchor sizes, seem to improve the mAP. Surprisingly,
the inclusion of the Focal Loss showed improvements for Model 4, but not for Model 5. As both Model
2 and 4 perform better than Model 3 and 5, it must be concluded that using 3 aspect ratios instead of 2
improves performance.
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(a) It is seen that the model detects two objects cor-

rectly (green); respectively a sign (TP) and a signal

(TN). The model makes a false positive prediction (red)

as it believes that the tunnel entrance is a railroad fur-

niture. Also, it makes a false negative prediction as it

does not find the ground truth signal (blue).

(b) In this example we see that the model detects two

railroad furniture, which are evaluated as false posi-

tives (red), whereas in fact, they should have been true

positives, since the ground truth bounding box is sim-

ply missing. This is a common trend throughout the

dataset.

Figure 2.17: Shows two examples from Experiment 4. Videos with the results from all five experiments
can be found at6

We further investigate the error by studying the Precision Recall (PR)-curves in Figure 2.18. The
procedure of calculating the PR curve is described in Appendix A.2. The PR curves are calculated for
IoU greater than 0.5.

Figure 2.18: Shows the PR-curve for each experiment.

From Figure 2.18, we note that the maximum recall for experiment 4 and 5 are significantly higher than
for experiment 1-3. The recall describes the model’s ability to locate objects. Thus, from this metric it
is seen that the Focal Loss helps localizing the railroad furniture. However, all the models have a recall
of less than 0.85 meaning that we at most find 85% of the ground truth bounding boxes.
Furthermore, it is seen from the PR curves that experiment 4 differentiates from experiment 5 by having
a higher precision for most recall values. This means that experiment 4 is better at classifying whether
a bounding box prediction is a sign or a signal. This might be due to the increased number of anchors,
which increases the differentiability between the bounding box predictions.

In Figure 2.19 each of the precision-recall curves are divided into a precision-recall for each class (signs
and signals). Furthermore, it is chosen to plot these curves without the maximum interpolation from
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Equation A.4 to better investigate for which prediction scores errors occur.

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

(d) Experiment 4 (e) Experiment 5

Figure 2.19: Precision and recall curves for signs and signals. See text for explanation.

From Figure 2.19, it is seen that in all five experiments, the model gets approximately the same recall for
both classes. However, especially, in experiment 4 and 5, the model obtains significantly higher precision
for signals than for signs. This trend, however, is not evident in the first three experiments. This might
be because the Focal Loss does not penalize well classified objects much, and since inter-class dissimilari-
ties for signs are larger than signals, the Focal Loss will have difficulties fitting to the more dissimilar signs.

Figure 2.20 together with Table 2.5 shows for which type of localization errors occur for different sized
bounding boxes. We differentiate between TP, FP, FN for small, medium and large bounding box pre-
dictions, which have areas of respectively less than 20

2 pixels, between 20

2 and 40

2 pixels, and larger
than 40

2 pixels. It must be noted that less 40

2 would all be considered small in standard terminology7.
Figure 2.20 shows the distributions for each experiment.

Studying the within size-category relationship between TP, FP and FN between the different experiment,
it is seen that the amount of FP is very high in all experiments; especially in experiment 4 and 5. This
stems from the Focal Loss, which decreases the probability of predicting background (the most well-
classified class), which leads to the prediction of more FP. Comparing the top row in Figure 2.20, it is
seen that in both experiment 2 and 3 there are more FP than experiment 1. However, it is also observed
that experiment 2 and 3 perform better as these have more TP and less FN than experiment 1. This
might be more evident in Table 2.5. However, as seen from Figure 2.17 and by investigation of the result

7This thresholds are significantly lower than in popular dataset such as COCO that uses respectively less than 362,
between 362 and 962, and above 962[15] to distinguish between object sizes
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(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

(d) Experiment 4 (e) Experiment 5

Figure 2.20: Shows the size-specific distribution of true positives, false positives and false negatives for
small, medium and large bounding boxes, where small, medium and large refers to the whether the
areas less than 20

2, between 20

2 and 40

2 or larger than 40

2. From the figure, we see that many FP are
predicted. However, we are not too concerned about these as described in the text below.

videos8, it is observed that many of the FP are caused by poor annotations and should in fact be TP -
especially for the small railroad furniture this is a big problem. By visual inspection, it is observed that
especially many of the small and distant railroad furniture are lacking annotations. Therefore, we are
not concerned about many FP when evaluating the performance of the models as many of these might
actually be TP.

TPs TPm TPl FPs FPm FPl FNs FNm FNl TPt FPt FNt

Experiment 1 150 1138 512 407 469 461 196 518 277 1800 1337 991
Experiment 2 151 1137 675 465 660 668 187 399 235 1963 1793 821
Experiment 3 152 1241 597 631 781 638 178 446 181 1990 2050 805
Experiment 4 168 1308 719 930 1150 620 136 300 150 2195 2700 586
Experiment 5 185 1229 628 1089 1526 651 141 419 192 2042 3266 752

Table 2.5: Shows the TP, FP and FN for the different experiments and size-categories, where the sub-
scripts s, m, l indicate respectively small, medium and large. t is the total across scales.

Based on Table 2.5 and Figure 2.20 it is seen that the models in general has most difficulties detecting
small objects (less than 20

2 pixels) as we see a rather high percentage of FN. Furthermore, model 4 seems
8https://www.dropbox.com/sh/31haxfnn7c807f7/AAAui9ItaPF0Tn7t77bFmVcUa?dl=0
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to be slightly better than model 5 at localizing objects. Surprisingly, model 5 performs best at localizing
small objects, even though it does only have 6 anchors.

Lastly, we study the classification of signs and signals. From Figure 2.21 we show a confusion matrix
from each experiment. From these confusion matrices, we see that in general it is easier for the models
to get an high accuracy for signals than for signs. This suggests larger appearance variation for the signs
in the test data. We observe that experiment 2 has the highest signal accuracy whereas experiment 1
and 5 has the highest sign accuracy.

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

(d) Experiment 4 (e) Experiment 5

Figure 2.21: Shows the size and class specific percentages of respectively TP, FP, TN, FN. See the text
for more explanation.

The results from the five experiments have shown that models with the Focal Loss generally performed
better than models with the Cross Entropy. Furthermore, we saw that exploiting the prior knowledge
about the object sizes improved the mAP, however, it seemed to worsen the mAP to reduce the number
of anchor boxes from 9 to 6. Model 4 achieved the highest mAP. This was mainly due to the improved
capability localizing objects witnessed by its relatively high recall. Thus, it must be concluded advanta-
geous to reduce the anchor sizes to fit the prior knowledge about the data.
In experiment 3 and 5, the number of anchor ratios were decreased to 2. This resulted in significantly
faster training time, however slightly lower mAP after 30 epochs. The lower mAP was primarily based
on lower precision for low confidence predictions. Investigation of the errors showed that model 4 and 5
predicted significantly more FP than the other models due to the Focal Loss assigning less probability to
the background class.

2.7 Part Conclusion

In this chapter, we have adapted the Faster R-CNN model to detect signs and signals in the Railroad
dataset. Through a descriptive analysis, the dataset’s size and difficulty was reduced to fit the scope of
the project, and prior knowledge about anchors were obtained. Several experiments have been carried
out exploiting this prior knowledge as well as experimenting with the usage of the Focal Loss instead of
the Cross Entropy.
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Through evaluation of the performance of the trained models, it was found that the Focal Loss improved
the mAP. Moreover, it was found that it improved the mAP to reduce the anchor size to fit the prior
knowledge on the anchors, however reducing the number of anchors did decrease the training time. By in-
vestigation of the type and frequency of errors, it was established that all models, and especially the ones
using the Focal Loss, found many false positives. However, many of these false positives were caused by
erroneous annotations and should in fact have been true positives. Thus, there should not be put too much
emphasis on this type of error, which makes the mAP an excellent performance estimator for this dataset.

There are several very interesting paths to continue the work on the 2D object detection. An obvious
next step would be to extend the training and evaluation to the entire dataset. This raises several chal-
lenges, e.g. dealing with more classes (of which some are very poorly represented) and dealing with very
large, distorted images. It is believed that the Focal Loss will be advantageous to handle the sparsely
represented classes. The large panoramic images could be dealt with by crops, as it would not be feasible
to feed the network the entire panoramic image due to memory issues. In this regard, interesting work
remains in reverse engineering the distortion for the panoramic images.
A second interesting path would be to test and evaluate the performance of some of the one-stage methods
mentioned in Section 2.1. Especially, the RetinaNet, which uses the Focal Loss, would be interesting as
it is expected that this method will handle the sparsely represented classes well.
Finally, as we are dealing with a video, it would be interesting to exploit the sequential information
described in Section 2.4. An simple approach would be to perform a majority vote across multiple frames
to boost the performance of one of the single frame models. It is expected that this majority voting
would reduce the number of false positives.

From the temporal dependencies between the frames in the video, it is furthermore possible to extract
spatial information about the 3D location of the railroad furniture. The next chapter seeks to extend the
2D detection to a 3D location for the railroad furniture.
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Chapter 3

Depth Estimation

The goal of the second part of this project is to enable an estimation of the 3D location of the detected
railroad furniture. This is important for COWI as it will provide them with an up-to-date map of the
positions of all the detected railroad furniture, which can improve safety and reduce maintenance cost.
More formally, we intent to map the corner points, qi = [xi, yi], of the detected bounding boxes to their
corresponding 3D locations, Qi = [Xi, Yi, Zi], in a global coordinate system. For monocular images, this
is a difficult and ambiguous task since a 2D point, qi, can be the projection of an infinitely number of
3D shapes. A unique solution to this ambiguous task can be found if the depth, Zi, is known using the
pinhole model[3]. Therefore, this chapter seeks to estimate a dense depth map for each frame in the
Railroad dataset that will enable COWI to acquire the 3D position of the detected railroad furniture.

3.1 Related work

The toolchain for depth estimation from monocular images is widely studied in Structure from Motion
(SfM). It is outside the scope of this project to account for the various methods within SfM to estimate the
depth, however the interested reader can consults Hartley and Zisserman’s Multiple View Geometry[3]
or the following surveys [9], [10], [36].

Whilst the traditional toolchain for depth estimation is effective and efficient in many cases, it relies
on accurate image correspondences. These image correspondences are traditionally obtained from hand-
crafted features (e.g. SIFT[5], FAST[8], SURF[14], ORB[30]), which works well when there is a clear
image correspondence, but fails when this is not the case e.g. occlusions of objects, lack of texture,
non-static scenery or thin structures [36]. To address these issues, researchers have used learned-based
features to handle several stages of the pipeline, e.g. feature matching[18]. These learned-based tech-
niques are attractive as they can leverage external supervision during training, and hopefully become
more robust towards the above issues when applied to test data.

Recently, it has been proposed to train networks end-to-end to learn the entire pipeline for depth es-
timation[28], [29]. These methods falls into the two categories; supervised and self-supervised depth
estimation methods. An advantage with the self-supervised methods is that they do not require ground
truth depth estimations as they can unsupervised learn depth through short sequences of consecutive
frames. Furthermore, the self-supervised methods have shown superior performance[42]. The inferior
performance of the supervised method is caused by the limited amount of depth annotated imagery and
the inaccuracy of the ground truth estimations that are usually obtained by LiDAR scanners. Since,
ground truth depth estimates are not available for the Railroad dataset, and because of the superior
performance of the self-supervised methods this project solely focuses on these methods. The follow-
ing section highlights recent achievements within self-supervised depth estimation for monocular image
sequences.

24



Computer Vision in Railroad Asset Detection

3.2 Theory

Zhou et al. were the first to propose a self-supervised deep learning method for depth and ego-motion
estimation[38]. Since their discovery, several researchers have suggested refinements that have further
improved the accuracy, however, the fundamental approach that Zhou et al. proposed have not changed.
Therefore, we will explain the SfM-learner suggested by Zhou et al. before we reveal two of the most
recent improvements; respectively vid2depth and struct2depth.

3.2.1 SfM-learner
The SfM-learner consists of two networks; a depth CNN and a pose CNN that independently estimates
respectively a dense depth map for an image and the relative camera pose between two frames. The two
networks are able to learn respectively depth and ego-motion through a self-supervised learning approach,
which is based on Depth-Image Based Rendering[4]. Depth-Image Based Rendering is the procedure of
mapping a 2D point with an associated depth to a 3D point followed by a projection of this 3D point onto
a 2D image plane from another viewpoint (Figure 3.1). The essential idea of this self-supervised method
is to use the Depth-Image Based Rendering procedure as supervision for the model. This supervision
enables the depth network and the ego-motion network to learn respectively depth and ego-motion as an
intermediate task.

Depth-Image Based Rendering

Fehn [4] found that 2D points on the image plane of a camera can be reprojected into their corresponding
3D points given the depth of each of these points, and then projected onto the image plane of a "virtual"
camera at another view position. Using Zhou et al.’s formulation, we have an image sequence I1 . . . IN
where an image It is the target view and the rest being source views Is where 1  s  N, s 6= t. We
will proceed by only considering one source image and one point correspondence to ease the notation,
however, the method generalizes to dense images and to multiple source images. In practice the method
uses 2 or 4 source images and 1 target image.

A 3D point M can be projected onto the image planes It and Is using the pinhole model (Equation 3.1
and 3.2). We set the world coordinate system as the coordinate system of the target image It to simplify
the equation.

Figure 3.1: Shows the camera setup for one target camera ct and one source camera cs. M indicates a 3D
point that is projected onto either the point pt or ps located respectively in image plane It or Is. Tt!s

is the transformation matrix that describes the rotation and translation from the target camera, ct, to
source camera, cs. Note that if Tt!s = 0, the point M would be observed without parallax, and thus its
3D location cannot be determined. Thus, we require motion between the frames.

p̃t ⇠= KPn
˜M (3.1)

p̃s ⇠= KPnTt!s
˜M (3.2)
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where pt and ps are the projection of M into respectively the target and source image, K is the intrinsic
camera parameters (for simplicity they are chosen to be the same), Pn is an 3⇥ 4 identity matrix. Tt!s

is a 4⇥ 4 matrix that describe the rotation and translation of the source view relative to the target view.
The tilde indicates homogeneous coordinates and ⇠

=

indicate that these correspondences are identical
"up to a scale factor". If Tt!s = 0, the point M would be observed without parallax between the two
frames. This would make it impractical to estimate its 3D position. Thus, we require motion between the
consecutive frames. We expect this to be a huge problem in the Railroad dataset as we earlier observed
that the train stops on several occasions. Furthermore, we require that the point M is visible in both
frames.
In the remainder of this section, we aim to deduce the point correspondence between p̂t and p̂s. In order
to do so, we first multiply with Pn and rearrange Equation 3.1, such that we get

K�1p̃t ⇠= M (3.3)
We then fix the scale by the depth zt. In order words, we have a unique correspondence between a 3D
point M and a 2D point p̂t if we know both the camera intrinsics K and the depth zt.

ztK
�1p̃t = M (3.4)

where zt is depth of the 3D point from the target view, which determines the scale. By substituting
Equation 3.4 into Equation 3.2, we further get

zsps = KTt!sztK
�1pt (3.5)

where zs is the depth of the 3D point from the source view. As the depth CNN has estimated a dense
depth map ˆDt given the target view, we can substitute zt = ˆDt(pt) and rewrite the equation

ps ⇠ KTt!s
ˆDt(pt)K

�1pt (3.6)
where the ⇠ indicates that ps is only known up to a scale factor. Thus, this equation describes a pixel-
wise view synthesis of the target image seen from the source image. We use bilinear interpolation of ps’s
four closest neighboring pixels in order to discretize ps (Figure 3.2).

Figure 3.2: Shows the process of bilinear interpolation. A continuous estimate for ps is obtained with
Equation 3.6. This continuous estimate is discretized with bilinear interpolation, where the weighed
average of the four neighboring points is used. The shaded area illustrate the discretization error that is
introduced. Figure has been modified, but it originally stems from [38].

The discretization introduces a discretization error, which in some cases is not negligible. In Figure 3.2,
the shaded area indicates that the bilinear interpolation can smooth out edges in an image as it samples
from the four neighbouring pixels. We will return to this point in Section 3.2.2.

By applying Equation 3.6 for all pixels in the source image, we can synthesize the target image ˆIs from
the source image s. We wish to synthesize the target image such that it looks similar to the true target
image, thus we define our view synthesis loss as

Lvs =

X

s

||It � ˆIs|| (3.7)

This loss function is called the photometric reconstruction loss, and by minimizing this loss function, the
relative pose between target and source view Tt!s and the depth map ˆDt will be learned as intermediate
tasks.
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Explainability mask

The exploited pixel-wise image correspondence from Equation 3.6 holds for static scenery without oc-
cluded objects, which is not realistic for real world applications. In order to improve the robustness
towards these dynamic movements, an explainability network is included in the model pipeline. This net-
work shares the decoder weights with the Pose CNN and outputs a pixel-wise softmax probability ˆEs for
each target-source pair that describes the networks belief where direct pixel synthesis will be successfully
modelled by Equation 3.6. This, explanatory mask is incorporated in the photometric reconstruction loss
function (Equation 3.8).

Lvs =

X

s

ˆEs||It � ˆIs|| (3.8)

As ˆEs = 0 leads to a trivial solution, it is necessary to add a regularization term Lreg

⇣
ˆEl
s

⌘
= �

P
p

ˆEs(p)

that encourages nonzero predictions by minimizing the cross-entropy loss with a constant label 1 at each
pixel location p. A smoothness term Lsmooth = || ˆDt||1 is also added to ensure smoothness in the depth
map prediction. It is my belief that the 1-norm is chosen as it penalizes discontinuities less than the
2-norm, which leads to sharper depth estimations along edges. Thus, the final loss function consists of
three terms. In practice, this loss function is calculated on four scales in order to capture the depth of
both textureless regions and in order to get detailed estimates of texture-rich regions.

Lfinal =

X

l

Ll
vs + �sLl

smocth + �e
X

s

Lreg

⇣
ˆEl
s

⌘
(3.9)

where l runs over the different image scales, and �s and �e are weighting for depth smoothness and
explainability regularization respectively. In current open-source implementations, �s = 0.5 and �c = 0,
which suggests that in practice the regularization term is not required.

Model architecture

As mentioned, the SfM-learner consists of two networks; depth CNN and pose CNN. Figure 3.3 gives
an overview of the algorithm.

Figure 3.3: Shows an overview of SfM-learner[38]. In this illustration, the model operates on 3 con-
secutive images It�1, It and It+1. A pixel-wise depth estimation ˆDt is predicted from image It by the
Depth CNN. The Pose CNN predicts the relative 4⇥ 4 extrinsic camera matrices ˆTt!t�1 and ˆTt!t+1 be-
tween image plane It and respectively image It�1 and It+1. The intrinsic and estimated extrinsic camera
matrices are used to project the densely estimated 3D points onto It�1 and It+1. The model is updated
using the photemetric reconstruction loss (Equation 3.9) between the projections and the actual images
It�1 and It+1.
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Depth CNN The depth CNN takes the target image It as input and outputs a dense depth prediction
ˆDt. It has an encoder-decoder architecture where the depth estimations are sampled from multiple scales
from the decoder1. The many depth estimations are averaged to produce the final depth prediction.
This multi-scale approach enables depth estimates from textureless regions. All the convolutional layers
in the networks are followed by a ReLU activation function except for the last layer where a sigmoid
activation function is used. This means that the predicted depth is constrained to be positive and within
a reasonable and pre-defined range (usually set to 80 m).

Pose CNN The pose CNN,  E , takes the target image, It, and a source image, Is, as input and outputs
a 6 ⇥ 2 vector (corresponding to the 3 Euler angles and the 3D translation) that describes the relative
camera poses between consecutive images.

ˆEs!t =  E(Is, It) (3.10)

The pose estimation network also has an encoder-decoder architecture. Global average pooling is applied
at all scales to aggregate predictions across all spatial locations.

With the SfM-learner, Zhou et al. laid the foundation for depth estimation using self-supervised methods.
They showed that depth and ego-motion networks could be supervised with the depth-image based
rendering procedure. It is important to note that this procedure only works for a static scenery and if
there is motion between consecutive frames.

3.2.2 Vid2Depth
Mahjourian et al. presented Vid2Depth in [40], where they suggest several refinements to Zhou et
al.’s work, which yielded significant improvements in accuracy. Thus, this section will focus on these
refinements.

Principle Masking

As mentioned earlier, an explanatory network learned to predict where view synthesis would be successful
and unsuccessful in SfM-learner. It is a difficult task to train a network to find a general-purpose mask
that can mask out dynamic objects, occluded objects, and edge regions, which are not visible from both
views. Mahjourian et al. found that this general-purpose mask especially did not penalize the parts of the
scene that were not covered in the new view, e.g. the image boundary in a forward going sequence. They
found that this could result in degenerated depth estimates. Therefore, they proposed an analytically
derived mask, which as its sole focus has these occluded boundary pixels. Given a pair of images It and
Is, one can obtain a pair of masks Mt and Ms that indicates which pixel coordinates are valid. The mask
Mt can be obtained by projecting the 3D points estimate by Is via Equation 3.6 onto image plane It. If
the projected points are within the image boundaries of It, then the pixel coordinate is valid. The reverse
process can be applied to obtain Ms. This analytically derived mask will ensure that the model does not
perform model synthesis on the image boundaries that are occluded due to forward or backward motion,
however, it will not penalize dynamic objects. Thus, in scenes with large dynamic motion, this can result
in degenerated depth estimates, but this is not the case for the Railroad dataset.

Loss Function

Mahjourian et al. also suggest a new loss function. This loss function consists of four elements, which
are described in the following paragraphs. Each loss is calculated over four different scales, similarly to
Equation 3.9.

1The depth network is adapted from DispNet [22]
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3D loss function Instead of solely penalizing on the projections of synthesized 2D points, Mahjourian
et al. suggest to constraint directly on the 3D point clouds generated by Equation 3.1 and 3.2 for all
pixels in respectively the target and source image. The 3D loss L3D uses the Iterative Closest Point (ICP)
method to find the transformation Tt!s that minimizes the distance between the two point clouds. The
3D points do not have an associated descriptor, thus point set registration methods are the most efficient
way to solve for the point cloud alignment. ICP is the most used point set registration method, and it is
my belief that ICP is chosen as it is intuitively easy to understand and rather efficient. The advantage of
using the 3D loss is that it avoids the rather crude bilinear interpolation in Equation 3.6 and Figure 3.2.

Structured similarity Structured similarity SSIM[6] is a measure for similarity between two image
patches, where 1 indicates complete similarity and 0 indicates complete dissimilarity. Thus, the loss LSSM

is defined as one minus the SSIM

LSSM =

X

ij

h
1� SSIM

⇣
ˆIijs , Iijt

⌘i
M ij

s (3.11)

SSIM(x, y) =
(2µxµy + c1) (2�xy + c2)�
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x + µ2

y + c1
� �
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y + c2
� (3.12)

where x, y are two patches with mean, µx and µy, variance, �2
x and �2

y, and covariance, �xy. c1, c2 are con-
stant to stabilize low denominators. Equation 3.12 stems from 3 terms SSIM(x, y) = l(x, y)c(x, y)s(x, y).
The first term, l(x, y) = (2µ

x
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y

+c1)

(

µ2
x

+µ2
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+c1)
, measures the luminance similarity between the two patches. Thus,

if the average luminance of patch x is equal to the average luminance of patch y, we get µx = µy ,
l(x, y) =

2µ2
x

+c1
2µ2

x

+c1
= 1. The second term, c(x, y) =
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+c2)

(
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, describes the contrast similarity. By

the same argument as before, equal variance in the two patches will gives c(x, y) = 1. The third term,
s(x, y) = ⇢x,y =

(�
xy

+c3)
(�

x

�
y

+c3)
, describes the structure similarity in the two patches by looking at their cor-

relation. Using the above definition of the correlation, the denominator of the third term cancels out the
numerator of the second term, leaving us with Equation 3.12. Hence, SSIM describes the similarity of
two image patches based on their averages luminance, variances of luminance and structural luminance
correlation. This ensures a more realistic view synthesis.

Gradient smoothness A refinement of the depth regularization term Lsmooth is proposed. This
refinement takes into account the gradients of the input image which allows sharp changes in the depth
map for regions where there are also sharp changes in the input image.

Lsm =

X

i,j

��@xDij
�� e�k@x

Iij

t

k
+

��@yDij
�� e�k@y

Iij

t

k (3.13)

The formula states that if there is a large change in the input image in the x direction then
���@xIijt

��� >> 0,

and thus e�k@x

Iij

t

k ⇡ 0, thus a large change in the depth image
��@xDij

�� >> 0 will not be penalized
much. Equivalently, for changes in the y-direction. Thus, if the sharp edges in the input and in the depth
image are similar we will not penalize these, however if the sharp edges does not correspond between the
two images, they will be penalized.

Total Loss By combining the three loss functions and the view synthesis loss function Lvs with the
new explanatory mask, we get

L =

X

l

↵Ll
vs + �Ll

3D + �Ll
sm + !Ll

SSM (3.14)

where l runs over the different scales that the loss is calculated for, and ↵,�, �,! are weightings for the
different parts. The current implementation does not support ICP, thus the weights are set as follows
↵ = 0.85, � = 0, � = 0.05, and ! = 0.15. Thus, the reconstruction loss is by far the most important loss

Page 29



Computer Vision in Railroad Asset Detection

term.

The refined mask suggested by Mahjourian et al. makes the depth estimations of vid2depth more robust
for scenery where edges are not visible in the synthesized view, which often happens with e.g. forward
motion. However, vid2depth do not penalize dynamic objects, and thus require the scene to be static,
which is a significant drawback of this method. Most recently, Casser et al. circumvented this requirement
with a further refinement of the model.

3.2.3 Struct2depth
Casser et al. [42] obtain state-of-the-art performance with an extension of Mahjourian et al.’s work where
they add a motion model and impose an object size constraint. The motion model models all dynamic
objects in the scene and the size constraint improves depth estimation of objects moving in front of the
camera with similar speed as the camera. Once again, the theory will for simplicity be described for two
images; one target image It and one source image Is, however, the theory extends to multiple source
images and in practice the model is fed 3 images.

Motion Model

The motion model,  M , has the same encoder-decoder architecture as the ego-motion model,  E (Equa-
tion 3.10), however it takes as input a target and source image (It, Is) and their instance-aligned seg-
mentation masks (Si,t, Si,s) where i runs over the number of segmented dynamic objects. The following
procedure is implemented to obtain the depth estimates: First, a binary mask of the static background
in each view is found by

O0(S) = 1� [N
i=1Si (3.15)

where N is the number of segmented objects and Si are the binary masks found with Mask R-CNN [33]
in a single frame. 1 is a one matrix with the same size as the image.

Figure 3.4: Shows an example of Equation 3.15 where one minus the union of the two masks S1 and S2

gives a mask for the static background O0(S). In the figure, black indicates ones and white indicates
zeros.

Recall that our view synthesis only works between static scenes. Thus, we are only interested in the scene
that is static throughout all images in the sequence as shown in Figure 3.5.

Figure 3.5: Shows an example of Equation 3.16 where the static background is obtained for two images.
The union of these two masks gives the scenery that is static throughout the entire sequence. White
indicate 0 (thus dynamic object) and black indicates 1 (thus static).

This can be calculated as
V = O0(St)�O0(Ss) (3.16)
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where V becomes a mask that filter all pixels that contains dynamic objects in the sequence. In this
equation � indicates element-wise multiplication. Using V , we can obtain the ego-motion only based on
the static background

ˆEs!t =  E(Is � V, It � V ) (3.17)

Note that this is exactly the same as presented in Equation 3.6 except only the static points are used.
This means that the masking of dynamic objects is applied directly on the images instead of on the
predictions (Equation 3.8). Furthermore, this segmentation of dynamic objects enables us to improve
predictions based on dynamic objects. As such, the motion  M of the dynamic objects in the scene can
then by calculated by

ˆM (i)
s!t =  M (Is �Oi(

ˆSs!t), It �Oi(St)) (3.18)

where i runs over all segmented dynamic objects2. Thus, as an intermediate calculation, we obtain a
motion estimate for all dynamic objects in the scenery.

The final warping result is a combination of the ego-motion warping ˆI and the warping for each individual
moving object ˆI(i). This way, our image warping applies both the dynamic and the static scenery.

I(F )
s!t =

ˆIs!t � V +

NX

i=1

ˆI(i)s!t �Oi(St) (3.19)

where the first term is view reconstruction estimated from the static scenery and the second term recon-
struction estimated from the dynamic objects. An appealing feature of the formulation is that we exploit
both the information in the static and in the dynamic scenery for our synthesized view.

Object size prior

Another issue that Casser et al. discovered with the existing monocular depth estimation methods was
that these models often modelled objects that were moving just in front of the camera and with the
same speed as the camera at infinity depth. This is because these objects show no apparent motion -
similarly to objects at infinity. As the model has no knowledge of the object scales, the movement of the
object becomes ambiguous. E.g. a car moving with the same speed as the camera will appear similar
in consecutive frames and minimizing the reconstruction photemetic loss will result in a prediction at
infinity, as the car does not seem to change position. This is a limited problem for the Railroad dataset,
however, a large problem for the KITTI dataset[11]. Therefore, Casser et al. propose to learn the objects’
scales during training, which enables 3D modeling of the objects. In practice, this is done by imposing a
weak prior on the height for each object class. As shown in Figure 3.6, the depth can be calculated for
the segmentation mask with the focal length.

ˆDapprox(p, h) ⇡ f
p

h
(3.20)

where f is the focal length, p is a learnable height prior in world units and h is the height of the respective
segmentation in pixels.
We can then learn p by defining a loss term Lsc as in Equation 3.21. This loss term compares the depth
approximation Dapprox obtained for every segmented object via Equation 3.20 with the depth map for
the object’s respective position. The category specific height prior is updated such that Equation 3.21 is
minimized.

Lsc =

NX

i=1

�����
D �Oi(S)

D
�

D
approx

�
pt(i);h (Oi(S))

�

D

����� (3.21)

where D is the average depth of the middle frame, which is used as a scaling factor to avoid a degenerate
solution. The sum runs over all objects in the scene, and t(i) is a function that is used to identify a

2It is important to note that M̂
(i)
s!t does not directly describe the object motion, but are in fact modeling how the

camera would have moved in order to explain the object appearance. The actual movement of the objects can be obtained
by tracking the object’s voxel movements before and after the object movement transform in the respective region.
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Figure 3.6: Visualizes Equation 3.20. Due to the triangular geometry, the ratio between an object’s
height in world unit and in pixels is the same as the ratio of the distance to the object over the focal
length. Thus, Dapprox/f = p/h, where f is the focal length, p the height of an object in world units, h
the height in pixels and Dapprox the distance between the camera and the object.

category id for each object i.

For this project, it has been chosen to adapt the struct2depth model to estimate depth. This model
has been chosen because of its superior accuracy on the KITTI dataset[42], and the novel idea of using
segmentation masks for treating the static background and dynamic objects separately. An open-source
TensorFlow[21] implementation of this model is available at3. This model requires segmentation masks
that can be obtain with the Mask R-CNN[33]. The Mask R-CNN model has been chosen as it is the
open-source implementation that has the highest accuracy on the COCO detection challenge[16]. As the
name suggest, the Mask R-CNN builds on top of the R-CNN trilogy, which was explained in Section 2.2.
The next section will describe Mask R-CNN with emphasis on the changes from Faster R-CNN to Mask
R-CNN.

3.2.4 Mask R-CNN
As mentioned, the Mask R-CNN[33] builds on top of the Faster R-CNN. It achieves state-of-the-art results
on the COCO segmentation challenge[16]. A fundamental difference between Faster R-CNN and Mask
R-CNN is that Mask R-CNN performs both bounding box detection and instance segmentation. The
goal of instance segmentation is to assign an object class to each pixel value in an image. This section
will focus on the changes from Faster R-CNN to Mask R-CNN.

Architectural changes The base RPN network is identically with the one used in Faster R-CNN,
however, in the Fast R-CNN a segmentation prediction is implemented in parallel with the bounding box
regression and classification as shown in Figure 3.7.

Figure 3.7: Shows the additional segmentation prediction that is calculated in parallel and thus indepen-
dently of the bounding box and classification. Feat. indicates the features calculate from the RoI using
RPN.

The mask prediction is performed by a fully convolutional network. The reason a convolutional network
is used, as opposed to the non-convolutional networks used for the bounding box classification and regres-
sion, is that the convolutional network retains spacial orientation, which is crucial for location specific
tasks such as pixel-wise segmentation. The convolutional network outputs a binary mask for each m⇥m

3Implementation of struct2depth: https://github.com/tensorflow/models/tree/master/research/struct2depth
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RoI for all K classes, thus the output is a K ⇥m⇥m.

The parallel implementation of the segmentation decouples the segmentation prediction from the bound-
ing box classification, which is crucial for the model’s performance as it removes the competition among
the class labels[33]. This means that the class prediction of a segmented region is based on the bounding
box classification.

For training this model, the multi-loss function (Equation 2.1) is extended to consist of three normalized
terms

L = Lcls + Lloc + Lmask (3.22)

where Lmask is defined as the average binary cross-entropy loss, only including the k-th mask if the region
is associated with the ground truth class k. Thus, only the estimate of the ground truth segmentation
contributes to the loss. This ensures that there is no competition between the classes.

Lmask = � 1

m2

X

1i,jm

⇥
yij log ŷ

k
ij + (1� yij) log

�
1� ŷkij

�⇤
(3.23)

where K is the number of classes, m2 is the area each of the K pixel-wise binary mask predictions. yi,j
is the ground truth as position (i, j) and ŷki,j is the predicted probability for class k. We divide by the
object area m2 such that bigger objects do not contribute more than smaller objects as this would be to
favour close-by objects.

RoI Align RoI Alignment is a refinement of the RoI pooling layer used in Fast R-CNN, which have
shown significant improvements in performance[33]. The problem with the RoI pooling is that data is
often misaligned or lost, which becomes evident for pixel-wise segmentation. This happens because the
RoI pooling discretizes the stride as illustrated in Figure 3.8. While this may not impact bounding box
predictions, which are rather robust to small translations, it has a large negative effect on predicting
pixel-accurate masks[33].

Figure 3.8: Shows the two problematic situations caused by the discretization of the stride for the RoI
pooling. In the first situation, we have a 17⇥ 17 RoI that we want to reduce to a 7⇥ 7 RoI. Below the
figure, the stride is calculated where ) indicate rounding to closest integer. Since the stride is rounded
down, we will miss some information in the pooling process (indicated with green in the left figure). In
the second scenario, our RoI is 18⇥ 18, thus the stride is rounded up to 3. This means that we select a
too large area, which results in misalignment of the pixels (indicated with red in the right figure).

RoI Align, on the other hand, do not round the stride. Instead, each RoI is divided into bins; each with
four sampling points as seen in Figure 3.9. Bilinear sampling (described in Figure 3.2) is then used to
calculate a value for each of the sampling points. Maximum or average pooling are then performed on
the four sampling points, such that each bin gets just one value.
Thus, the advantage with the RoI Align is that we do not lose information nor risk misalignment, because
we do not perform any discretization of the RoI.
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Figure 3.9: Shows an example of RoI Alignment[33]. The dashed lines represent a feature map, the solid
lines the bins of a RoI (in this case there are only four bins), and the dots are the four sampling points
per bin. The arrows indicate bilinear sampling for one sampling point. From the figure, it is seen that
we do not lose any information even though the RoI is not aligned with the feature map.

In conclusion, Mask R-CNN enables object segmentation by an elegant extension of Faster R-CNN. In
parallel, segmentation masks are made using the same feature map as the classification and bounding
regression estimate, thus Mask R-CNN adds little computational overhead. The following Section will
describe how segmentation masks are obtained for the Railroad dataset.

3.3 Motion Mask Estimations

The Struct2Depth model requires segmentation masks such that dynamic objects and the static back-
ground can be dealt with separately. These segmentation mask are calculated off-line and fed to the
model during training.
A pretrained Mask-RCNN implementation4 was adapted to obtain the motion masks for the Railroad
dataset. This implementation was chosen as it is well-documented and had achieved state-of-the-art
performance on the several datasets[32], including the KITTI dataset[11].

Figure 3.10: The top image shows the original image for the Railroad dataset, and the bottom image
shows the corresponding segmentation mask. From this mask, it is seen that one train and two traffic
signs are segmented.

The pre-trained Mask-RCNN had been trained on the COCO dataset [15] which have 91 categories5

4Pretrained Mask-RCNN model: https://github.com/matterport/Mask_RCNN
5Complete list of categories in the COCO dataset https://tech.amikelive.com/node-718/

what-object-categories-labels-are-in-coco-dataset/
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under 12 super-categories6. As most of these categories are obsolete for the Railroad dataset, it was
decided only to include the segmentation masks from the three first super-categories (person, vehicle,
outdoor). The pixel-wise largest and occurrence-wise most frequently dynamic object in the Railroad
dataset are trains. The advantage of applying a Mask-RCNN model that had been trained on the COCO
dataset is that this model already has learned to segment trains, and thus the model does not require
fine-tuning.

Figure 3.10 shows an example of an obtained segmentation mask for the Railroad dataset. The major
dynamic object in the sequence is the passing trains. In total, a train passes by 7 times where each train
pass occupies between 50�200 frames. From manual inspection, it was found than in all 7 instances, the
segmentation mask correctly identified the train for more than 95% of the frames. Thus, the segmentation
masks rather accurately identifies the dynamic objects in the railroad sequences. As the train category
is the major dynamic object in the Railroad dataset, accurate segmentation on this category is by far the
most important for the struct2depth model to learn accurate view synthesis.

A segmentation mask was calculated for all images in the Railroad dataset. These masks were used
to segment respectively the static scenery and the dynamic objects in the Struct2depth-model during
training and inference. In the next section, we will estimate the intrinsic parameters, which are also
required for training the Struct2depth-model.

3.4 Estimation of the Focal Length

In order to reconstruct the depth information from the images, we need the intrinsic camera parameters.
Unfortunately, these parameters are unknown for our uncalibrated railroad images sequence. However,
with a number of assumptions, it is possible to estimate the most important intrinsic parameters, namely
the focal length.

We will assume that the railroad tracks are parallel and runs on the planar x-z-surface (Figure 3.11). We
further assume that the camera is mounted with an offset (H,T, 0) relative to the Origin of the global
coordinate system. We place the global coordinate system such that the z-axis is parallel to the rails and
located halfway in between them. Thus, the x-axis becomes orthogonal to the rails. These assumptions
are not controversial. The setup is shown in Figure 3.11.

A more controversial assumption, we are forced to make, is that the camera is mounted such that it is
aligned with the tracks and thus it does not have any rotation. We furthermore ignore axis screw and
radial distortion to reduce the number of parameters. This later assumption is not controversial. With
these assumptions, we can write the projection of an homogeneous 3D point onto the 2D image plane as
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The point pairs Qi = (±X, 0, Z) can be detected along the rails. For these points, we will assume that
the z-value is given by Z = Z0+nL, where Z0 is an unknown offset, L is a constant distance between the
crossties and n is an unknown integer. We obtain both the inter-rail distance 2X and the inter-crossties
distance L from a railroad lookup table. The Australian states of Queensland, where the railroad se-
quences are recorded, have narrow gauge railways7, thus 2X = 1067mm and for narrow-gauge railways

6The 12 super-categories in the COCO dataset: person, vehicle, outdoor, animal, accessory, sports, kitchen, food,
furniture, electronic, appliance, indoor

7https://en.wikipedia.org/wiki/Narrow-gauge_railway
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Figure 3.11: Shows a sketch of the assumed setup. The rails are assumed parallel and located on the x-z-
plane. The global Origin, O, is placed halfway in between the rails and the camera’s Origin is placed with
an offset (T,H, 0). The distance between the rails are 2X and is known as well as the distance between
the wooden crossties L, which is also known.

the inter-crossties are most often L = 667mm8, however this can vary depending on the material of the
crossties and the forces to which the rails must be able to withstand.

It requires two vanishing point to estimate the principle point (cx, cy)[3], and as only one is visible in our
setup (located at the green dot in Figure 3.12), we make an assumption that the horizontal coordinate
cx is the x-coordinate of the vanishing point and the vertical component cy is the middle of the image
as shown with the red axis on Figure 3.12. In practice, the choice of the principal points are often not
crucial for obtaining a useful calibration. Figure 3.12 shows the described setup and the detected points.

In order to obtain the most accurate annotations, the points were located on a zoom as shown in Figure
3.13a. From this figure, it is seen that the annotations are not completely accurate. In future work, more
accurate estimates can be obtained if the points are constrained to lie on a straight line. Even though,
one point pair would be enough to obtain the focal length f and the cameras relative position (H,T ), we
annotate multiple points in order to improve numeric stability of the parameter estimate.

In order to estimate the parameters H and T , we find (x̃, ỹ) by dividing with the scaling u = Z and by
changing the origin to the principal point (cx, cy), we get

(x̃, ỹ) =
f

Z
(H ±X,T ) (3.25)

where x̃ = (x� cx) and ỹ = (y� cy). By defining r(±X) = x̃/ỹ = (H ±X)/T , we get two equations with
two unknowns, which are found as

T =

2X

r(X)� r(�X)

H = X
r(X) + r(�X)

r(X)� r(�X)

(3.26)

8https://books.google.dk/books?id=Ttd1DwAAQBAJ&pg=PA478&lpg=PA478&dq=sleepers+667+mm&source=bl&ots=
7ss1hxowdd&sig=8guGqbOaE7MmYT52hQVxDNbdQbM&hl=da&sa=X&ved=2ahUKEwiH1pjTx9HeAhUEL1AKHQ9ID1oQ6AEwB3oECAgQAQ#
v=onepage&q=sleepers%20667%20mm&f=false
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Figure 3.12: The green dot shows the selected vanishing point. The red axis shows the chosen principal
points; Cx and Cy. Cx is chosen as the x coordinate of the vanishing point. Cy is chosen as half the
image height. The blue and red points show the annotated points on respectively the right and left rail.

(a) The annotated points are shown as red or blue

points.

(b) Points plotted to illustrate the perspective ge-

ometry. Note that this plot is rotated compared to

the image.

Figure 3.13: Shows crops of Figure 3.12 used to annotating the points.

We now consider two neighboring points on the same rail, i.e. difference in z-coordinate by L. We let the
y-coordinate of the two points be respectively yi and yi+1. Then

Z0 + nL = f
T

yi
and Z0 + (n+ 1)L = f

T

yi+1
(3.27)

By subtraction, f can isolated

f =

dZ

T

yiyi+1

yi+1 � yi
(3.28)

Thus, by Equation 3.28 and 3.26, we can estimate the three unknown camera parameters from Equation
3.24. As shown on Figure 3.12, we use five point pairs for this estimation. A simple average over the
parameter estimates is used to increase stability. The obtained parameters are

f = 1145.83± 141.66 pixel
H = 15.83± 1.35 mm
T = 4850.14± 88.34 mm

(3.29)

Based on the geometry drawn in Figure 3.11 and the image shown in Figure 3.12, it makes sense that
the H offset is small. It also makes sense that T is significantly larger than H, however the estimate T

Page 37



Computer Vision in Railroad Asset Detection

states that the camera is located 4.85 m over the rails, which seems somewhat high. The focal length
estimate does not seem unreasonably high, however, it is associated with a significant error (also seen in
Figure 3.14).

Figure 3.14: Shows the distribution of the estimated parameters. From the figure, it seen that the
parameter estimates are rather uncertain. Improved sampling or parameter optimization would possible
reduce the parameter uncertainty.

From Figure 3.14, it is seen that the parameter estimate are rather uncertain. The uncertainty of the
parameter estimates can either be caused by erroneous assumptions, incorrect world-geometry or poor
annotations. In the case of poor annotations, one could try to obtain better parameter estimates by
annotating more points from a larger array of images (under the non controversial assumption that the
camera parameters are constant throughout the image sequence), constrain the annotated points to lie
on a straight line, and use a more robust optimization algorithm than the simple average, e.g. formulate
the optimization of the parameters as a maximum likelihood problem.

3.5 Experiments

As described in Section 3.3 and Section 3.4, we have obtained both an estimate of the intrinsic camera
parameters and a segmentation mask for each image in the Railroad dataset. These are used to train the
struct2depth model in the two experiments.

Figure 3.15: Three difficult scenarios for the Railroad dataset, that makes learning of both depth and
ego-motion difficult, as they yield little information about the 3D scenery.

In the first experiment, we trained on the same training set as used in Section 2.5 consisting of more than
40000 images. As one might expect, the training did not converge, since this train sequence includes train
stops (thus no motion between frames), tunnels (sequences where most pixels are black) and sequences
where the camera is blinded by the sun. Figure 3.15 shows difficult examples from the Railroad dataset

Page 38



Computer Vision in Railroad Asset Detection

that make learning of accurate view synthesis impractical.

In order to circumvent these difficulties, we used a small subset of the Railroad data in the second ex-
periment. This subset was selected such that the train drove with approximately constant speed, only
passed a few tunnels and the camera was not blinded for a longer time. The selected subset consisted of
363 consecutive frames. This is a very small dataset, and thus, we expect the model to overfit. In future
work, it would be of interest to train on multiple subsets, which are selected with the same criteria as
the one used on this experiment. The hyper parameters shown in Table 3.1 were used for training. Note
that the weight for the 3D Loss is set to 0 as it had not yet been implemented and it was outside the
scope of this project to implement it.

Hyper Parameter Value
Sequence length 3
Reconstruction Loss 0.85
SSIM Loss 0.05
3D Loss 0
Smooth Loss 0.15
Batch size 4
Learning rate 0.0002

Table 3.1: The chosen hyper parameters for training. Similar to default parameters in9

The model was trained for 48 hours using the Adam optimizer and random image flipping. This data
augmentation is introduced to compensate for overfitting. Figure 3.16 shows three loss function (3D
loss was set to 0 as it was not available in the open-source implementation) and the total loss for the
struct2depth model.

Figure 3.16: The reconstruction, SSIM and smooth loss weighted respectively 0.85, 0.15 and 0.05. The
total loss is shown in bottom right corner.

From Figure 3.16, it is seen that both the reconstruction loss and SSIM loss decrease through training,
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however the smooth loss increase. Recall that the smooth loss penalizes where the gradients in the input
image and depth prediction does not coincides. The untrained depth map predictions is initialized as a
constant and thus do not have any gradients, thus by Equation 3.13 the smooth loss will start out at
zero. As more gradients are introduced, this loss term will begin to penalize.

Finally, based on Figure 3.16, it seems that the model have converged on the subset, and thus we proceed
to the evaluation of the model, which is presented in the next section.

3.6 Results

In this section, we seek to evaluate the performance of the trained model. This is not a trivial task, as there
is not any ground truth depth nor ego-motion information available. Furthermore, the depth estimations
are only predicted "up to scale". Thus, the evaluation is mainly based on visual inspection. A crude esti-
mation of the global scale is used to demonstrate how a more sophisticated evaluation can be performed
using the detected Railroad furniture’s sizes. Video that shows the inference on the Railroad datasets is
available at https://www.dropbox.com/sh/31haxfnn7c807f7/AAAui9ItaPF0Tn7t77bFmVcUa?dl=0.

Figure 3.17 shows three images with their inferred depth estimations, where yellow is closer and blue is
more distant. Note that the depth prediction is only known "up to scale", so we simply study the relative
depths in the images. From the depth estimation in Figure 3.17a, the structure from the bridge is visible
as well as the light pole in the foreground. However, the depth estimation of the top part of the light
pole is rather blurred. This might be due to the fact that the horizontal gradients in the input image
are smaller for this part of the light pole compared to the bottom part. As the network seeks to preserve
respectively sharp and blurred edges from the original image, the small gradients in the original image
might lead to blurred depth estimate.

The train is moving further away from the bridge in Figure 3.17b and 3.17c. This can be seen from the
depth estimations that correctly identifies that the distance to the bridge increases through the sequence.

(a) Frame 45924 (b) Frame 45937 (c) Frame 45993

Figure 3.17: For each image, the top half shows the original image and the bottom half shows the depth
prediction, where yellow is close and blue is distant. Note that the estimates are "up-to-scale".

In the lower left corner of Figure 3.17c is a dark square, indicating that the network predicts that this
region is very far away. This is obviously wrong, as the ground in this region is close to the camera.
This wrong prediction is properly caused by a very small change in the appearance of this region between
the three consecutive frames. Small appearance variation is typical observed at low parallax, thus the
network believes that this region is very distant.

From all three images, it is seen that the network has difficulties predicting the distance to the sky. The
sky should be the most distant region, and thus be very dark blue, however it is estimated closer than the
building in the background in both Figure 3.17b and Figure 3.17c. This is surprising since, the white sky
does not exhibit any change in appearance, and thus would be expected to be observed at small parallax.
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Next, we investigate the consistency between the depth estimations in Figure 3.18. As each depth esti-
mation is inferred from a single frame, and since the predictions are only known "up to scale", it could
lead to inconsistency between the estimation of the global scale from one image to another. However,
from Figure 3.18, we see quite nice global consistency through the four images, e.g. tracking the sign
in the left side of the image and the pole in the right side of the image. These two objects come closer
through the sequence. The rest of the scenery also seem to be consistent through the sequence. In this
sequence, it is again noticeable that the network have difficulties of estimating the depth to the sky. On
the other hand, the network does surprisingly well at estimating the depth of the planar surface where
the tracks lies. As expected, we see depth of this planar surface to constantly increase the further away
the ground is to the camera.

(a) Frame 45999 (b) Depth 45999

(c) Frame 45998 (d) Depth 45998

(e) Frame 45997 (f) Depth 45997

(g) Frame 45996 (h) Depth 45996

Figure 3.18: The left column shows four consecutive frames. The right column shows their respectively
depth estimations. Yellow is close and blue is more distant.

The ego-motion model predicts the movement of the camera up to scale. In Figure 3.19a, the predicted
path is drawn. The model correctly identifies that the train drove backwards. However, based on the
video, it is expected that the path would be more curved. Unfortunately, GPS coordinates are not avail-
able. If GPS were available, the cumulative distance between the GPS and the predicted path would give
an estimate for the error. Moreover, by inspecting the inferred video, it becomes clear that the global
scale is too small, as the train definitely travels more than 9 meters during the sequence.

Even though the network does not know the global scale, these results might still be very useful for
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(a) Not scaled (b) Scaled with a factor 100.

Figure 3.19: The left figure shows the predicted ego-motion of the model. The right plot shows a scaled
version of this prediction that coincides better with the global scale.

COWI. E.g. the global scale can easily be obtained via GPS coordinates or simple measurement on
a map (this could be done off-line). The simplest method, would be to measure the distance between
two distant landmarks e.g. two stations, and manually find the two frames that are associated with the
selected landmarks. The scale factor would be the measured distance divided by the distance estimated
by ego-motion models between these two frames.

As a proof-of-concept, we assume that the GPS coordinates of the start and finish point are known.
Based on visual inspection of the video, it is assumed that the train travels approximately 900 m, and
thus we scale the prediction with 100, such that we fit to the global scale (Figure 3.19b). This is a crude
and controversial assumption, and it remains for future work to circumvent this assumption. However,
it allows us to demonstrate how the global scale enables interpretation of the depth map as an absolute
distance map in meters (Figure 3.20).

From Figure 3.20, we see that the model predicts the bridge to be approximately 40 meters away from
the camera. Recall that we estimated the focal length to be 1145 pixel, which suggest quite a lot of zoom,
thus the assumption about the global scale might be acceptable.

We can know use the pinhole model to estimate the size of the detected railroad furniture. The bounding
boxes of the two railroad furniture elements detected by Faster R-CNN (Section 2.6) are shown in Figure
3.20. From the pinhole model (geometry shown in Figure 3.6 with slightly different symbols), the relation
between pixel size and real world size can be found.

R =

rd

f
(3.30)

where r is the side length of the bounding box measure in the image plane in pixel, R is the side length
in world units, d is the depth to the object in world units, and f is the focal length in pixel. By this
equation, we estimate the size of the two bounding boxes detected in Figure 3.20 to be respectively (31
cm, 29 cm) and (35 cm, 28 cm). These are approximately the size that we expect a speed sign to have.
Thus, the selected global scale seem to be appropriate.

If the true size of the railroad furniture were known, and the global scale could be estimate via GPS
coordinates or a map, the size of the railroad furniture could be calculate for the entire sequence, and
their sizes compared to the ground truth sizes. This would be a more sophisticated evaluation method
than visual inspection.
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Figure 3.20: The predicted bounding boxes found with Faster R-CNN (Section 2.6) are shown in the top
image. The bottom images shows the depth map that have been scale to fit the global scale. The color
bar indicate the depth in meters.

3.7 Part Conclusion

In this chapter we adapted the struct2depth model to infer depth predictions for each frame in Railroad
dataset. The model was trained on a very small subset that was selected manually, such that it did not
include image pairs without motion, from tunnels nor images where the camera was blinded by the sun.
It was found necessary for the convergence of the model to select this subset carefully. In future work, it
would be interesting to extend the training data to multiple subset that are selected with these criteria
for more training data.
Through visual inspection it was found that the depth estimations captured the close-by structures
reasonably well. However, the model had difficulties with distant objects such as the sky. We found
acceptable consistency between consecutive depth maps.

As a proof-of-concept, the global scale was crudely judged from the ego-motion estimates to be a factor
100 more than the predictions. In future works, this global scale factor can be estimated with GPS
coordinates or by off-line measuring the distance between two recognizable landmarks, e.g. stations on
a map. GPS coordinates are usually imprecise up to 10 m, however, as only the start and end points
are necessary to obtain the global scale, and these probably are more than 1 km from each other, the
measurement of the GPS will be negligible. This argument also applies for the landmarks selected on a
map.

Using the global scale, a more sophisticated method for evaluation of the depth estimates was presented.
This method enabled size estimation of the detected Railroad furniture using the pinhole model. Two
speed signs were found to measure respectively (31 cm, 29 cm) and (35 cm, 28 cm), under the assumption
of a global scale factor of 100.

The intrinsic parameters, which the struct2depth model used, were estimated using classical computer
geometry. By using the parallel nature of the track, the vanishing point, the width of the tracks and
distance between the crossties, it was possible to give a reasonable estimate of the intrinsic parameters.
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The most controversial assumption was that the camera did not have any rotation with respect to the
rails. It was found that the estimated parameters, and especially the focal length, were associated with
rather high uncertainty, and a more thorough examination is required. In this regard, it is suggested to
sample points from more images and use a more robust optimization algorithm.

Lastly, the Mask R-CNN model was used to infer masks on the Railroad dataset. This model had been
trained on the COCO dataset, and was thus able to segment trains, which were the largest dynamic
object in the Railroad dataset. From manual inspection, it was found than in all 5 instances, the seg-
mentation mask correctly identified the train for more than 95% of the frames. A disadvantage with the
struct2depth model is that these masks have to be calculated off-line, which adds a significant overhead
in complexity and computational speed to the depth estimation pipeline compared to earlier methods.
On the other hand, accurate segmentation allows the model to use both the static and dynamic scenery
for the view synthesis, improving the precision of the depth estimates. In future work, the Mask R-CNN
could completely replace the Faster R-CNN as it also can predict bounding boxes. This way, the 3D
estimation pipeline, would be simplified and all output of the Mask R-CNN would be exploited.

Overall, the obtained results are interesting for COWI as a prototype for the possibilities of their data.
As for now, the depth estimates are very sensitive towards tunnels and insufficient motion, and thus the
model cannot be trained on the entire Railroad dataset. This being said, the model can most likely be
trained on multiple well-behaved subsets to increase the robustness of the solution, and then inference
can be performed on the sequences without motion. This is possible as the trained depth model can
estimate the depth given a single frame and thus does not require motion. Thus, a depth estimate for all
outdoor (and not blinded) images can be found.
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Chapter 4

Discussion & Conclusion

4.1 Discussion & Future Work

The objective of this report has been to investigate the feasibility of automate the processes of generating
an up-to-date map of the railroad infrastructure as this can reduce manual labor, reduce maintenance
costs and potentially improve safety.

To approach this goal, we established a three-stage pipeline, where the railroad furniture was first se-
lected in 2D, then a dense depth where estimated, and finally, 3D information was obtained based on
the results from the two first stages. There exists networks, which are trained to perform 3D bounding
box detection[25], [26], [35] end-to-end, thus basically unifying the suggested three-stage pipeline. The
results from these methods are advantageous for estimation of objects that have a significant depth, such
as cars, however, for thin structures, such as signs, the output would be very similar. On the other
hand, the suggested pipeline is advantageous because both the first stage, 2D object detection, and the
third-stage, depth-based projection, are mature research domains. Furthermore, the suggested pipeline
does not require annotated 3D bounding, which is the case for the end-to-end 3D bounding box methods.
Therefore, for future work, the most encouraging path to continue would probably be to refine the three
stages of the pipeline.

For the first-stage, the Faster R-CNN was adapted for object detection of railroad furniture. Via mod-
ification of the loss function and the anchor sizes, this model was able to find 85% of the annotated
bounding boxes. This might not seem sufficient for real world applications. However, as the railroad
furniture appears across multiple frames, COWI should evaluate the performance according to how many
of the unique railroad furniture that have been detected. It is expected that this score will be significantly
higher, as all the railroad furniture will be close - and thus easier to detect - in at least in one frame, but
probably more, while it is highly unlikely, that they will be missed in every frame. This however requires
manual or semi-manual ID-assignment of the bounding boxes, which have been outside the scope of this
project.

The adapted Faster R-CNN model discovered many false positives. These false positive falls into two
categories as some are simply caused by erroneous annotations and in reality should have been true pos-
itives, and others are in fact false negatives. To handle the many false positives, it is recommended to
post-process the bounding box predictions. E.g. exploit the spatial and temporal information about the
bounding boxes to filter wrong predictions by performing a majority voting across a 3-7 frame sequence
of images.

For future work, the models should be trained on the entire dataset; including the full panoramic images
and all the 25 classes. This will yield more training data, which we expect will improve the performance
of the model. The larger dataset will also yield challenges; dealing with very large distorted panoramic
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images and screwed class distributions. The large images will probably not fit into memory, and thus
the images should be cropped intelligently. Furthermore, it should be considered how to deal with the
distorted regions. In regard to the screwed class distribution, it is expected that the Focal Loss will be
advantageous for handling the sparsely represented classes. On this subject, it would be compelling to
compare the performance with the one-stage method, RetinaNet[34], which also uses the Focal Loss.

In the second stage, the struct2depth was adapted to estimate a dense depth map for each frame. The
model was chosen as it had shown superior performance on the KITTI dataset. Because of convergence
difficulties, the model was trained on a very small subset of the Railroad dataset, which was selected
such that it did not include consecutive triplets without motion or from within tunnels. The foreground
of the estimated depth maps did for the most part resemble the expected depth, however, the depth
estimation of the distant objects such as the sky, were clearly wrong. Based on this visual inspection of
the estimated depth maps, more work is required to obtain depth estimates that are accurate enough for
a real life application. It is assumed that in order for the model to generalize better, it has to be trained
on more data. This can be done by manually selecting more subsets with motion and without tunnels.
An alternative is to train on a similar dataset, such as the KITTI dataset. However, as the intrinsic
camera parameters in the two dataset are not the same, it is uncertain how accurate the inferred depth
estimate would be. Therefore, it will properly require fine-tuning on stable sequences from the Railroad se-
quence, in order for the model to learn the view synthesis with another set of intrinsic camera parameters.

The struct2depth method requires both segmentation masks and an estimate of the intrinsic camera
parameters. The biggest and most often occurring dynamic objects in the Railroad dataset were trains. If
not segmented appropriate, they could potential break the view synthesis. Through manually inspection,
it was found that the Mask R-CNN trained on the COCO dataset, performed really well at segmenting
the trains. This is very positive for COWI as this result means that it is not necessary to annotate
segmentation masks for the entire Railroad dataset, which would have been a very labour intensive and
expensive process.
The intrinsic camera parameters were estimated using several assumptions about the geometry of the
scene. The most controversial being that the camera did not have any rotation with respect to the rails.
The inference were estimated from just 5 point pairs and were associated with a rather large uncertainty.
It is assumed that more accurate estimates can be found by using additional point pairs across multiple
images. Furthermore, in order to improve the annotation accuracy, the annotated points could be con-
straint to lie on a line. On the other hand, in a real world application, it is not controversial to assume
that the intrinsic camera parameters are known. More accurate intrinsic camera parameters would most
likely improve the depth estimates, and it remains an important task for future work to either ask COWI
for intrinsic parameters or improve the estimate of these.

The third stage, the positioning of the detected railroad furniture based on the 2D bounding box and the
dense depth estimate, requires an estimate of the global scale. It is not controversial to assume that the
global scale can be estimated with sufficient precision for real life applications relatively cost free, e.g. it
could be found by measuring the distance between two landmarks, such as stations, on a map, and then
match with the corresponding frames in the railroad sequence. The estimated ego-motion could then be
scaled to coincide with the measure map, which would yield the scale factor to obtain the global scale.

In this project, a proof-of-concept for a refined method to evaluate the entire pipeline have been proposed.
This methods use the bounding boxes predictions and the depth map estimate to calculate the 3D size
of the signs and signals, which can be compared with the true size. For future work this novel evaluation
method could be extended to multiple classes of railroad furniture, each associated with their own ground-
truth size.
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4.2 Conclusion

In this project, we have investigated the feasibility of automating the processes of generating an up-to-
date map of the railroad infrastructure through 2D object detection and dense depth estimations.

The object detector, Faster R-CNN, was adapted and trained to detect signs and signals in the Railroad
dataset. The model was modified for enhanced performance, especially with a focus on reducing the
amount of false negatives, as it was discovered that many of the false positives were caused by erroneous
annotations. Through several experiments, it was found that including the focal loss and exploiting prior
knowledge about the size of the bounding boxes improved the model’s performance. It is judged that
COWI can use this technology without much improvements to find the signs and signals in the Railroad
dataset.

We further adapted and trained the Struct2depth model to estimate a dense depth map for each frame
in a subset of the Railroad dataset. In a proof-of-concept, we demonstrated that if the global scale is
available, which is not a controversial assumptions in a real world setting, the depth map can be used
to obtain 3D information about the detected railroad furniture. Through visual inspection of the depth
map estimations, it was found the in general the foreground was well estimated, however, more distant
object e.g. the sky were associated with high error. As the depth map for large parts of the scenery was
inaccurate, it is considered that this technology requires improvements with regard to robustness in order
for COWI to use the inferred depth maps for 3D positioning of the railroad furniture.
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Appendix

A.1 Time dependency

The Railroad dataset consists of low sample video sequence, however, despite of the low sample-rate, we
expect the frames to be highly correlated over time. In Figure A.1 the number of objects within each
cropped frame is presented for the entire time series.

Figure A.1: The number of objects appearing in each cropped frame. The blue line shows the total
amount objects and the red and green lines shows respectively the number of signals and signs per frame.

From Figure A.1 we see that frames with objects cluster together. A stair case-alike step structure is
visible describing how objects appear and disappear - one by one - from one frame to the next. This
structure is more clearly identified in Figure A.2.

Figure A.2: Shows a zoom of Figure A.1. From this Figure the stair step structure of the number of
objects becomes clear.
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In order to confirm the time dependency of the number of objects per frame, the auto correlation function
of the number of annotations per frame is shown in Figure A.3. The auto correlation function describes
the correlation in time.

Figure A.3: The auto correlation function of the number of objects per cropped frame. The plot indicates
a clear time dependency.

Figure A.3 tells us that the number of objects in a given frame is approximate 0.9 correlated with the
previous frame. Thus, if we observe 2 objects in a frame, we would expect with 90% probability also to
observe 2 objects in the next frame. Based on this observation, we should be careful when splitting data
into training and test set as these must be independent.

A.2 Evaluation of 2D object detectors

Model evaluation in object detection is not a trivial task as it consists of two sub-problems - localization
and classification - each with there own errors. Therefore, the notions on true positives (TP), false posi-
tives (FP), true negatives (TN) and false negatives (FN) can be confusion. The purpose of this section
is to make this distinction more clear.

The intersection over Union (IoU) is used to determine how good the localization of an object is. It
measures how much the predicted bounding box overlaps with the true bounding box. It is calculated as
the ratio between the intersection and the union. The problem about this definition is that it does not
take into account the size of the bounding boxes, for which we intuitively would allow much less error
for small boxes than larger boxes. Usually in detection tasks, a threshold of 0.5 is used to distinguish
between background and objects.

Localization :

• TP: The bounding box prediction and the ground truth bounding box have an IoU above 0.5.

• FP: The bounding box prediction has an IoU below 0.5 with all the ground truth bounding boxes.

• FN: A ground truth bounding box has an IoU below 0.5 with all bounding box predictions.

Classification (the two class problem of signals and signs (Section2.4) :
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• TP: Signal prediction is actually signal.

• FP: Signal prediction is actually sign.

• TN: Sign prediction is actually sign.

• FN: Sign prediction is actually signal.

To comprise the evaluation of the two sub-task into one score, the Precision Recall (PR) curve is often
used to evaluate object detectors. It is important to note that the precision and recall uses slightly
different definitions of TP, FP and FN that encapsulates both information from the task of classification
and detection.

Object detection :

• TP: The bounding box prediction and the ground truth bounding box have an IoU above 0.5 and
the classification of the object is correct.

• FP: The bounding box prediction and the ground truth bounding box have an IoU above 0.5, but
the classification of the object is incorrect.

• FN: A ground truth bounding box has an IoU below 0.5 with all bounding box predictions of the
ground truth class.

With these definition settled, the recall and precision can be defined as

Recall =
TP

P
=

TP

TP + FN
(A.1)

Precision =

TP

TP + FP
(A.2)

where TP , FP and FN follows the object detection definition. The interpretation of the precision is
how well the model classifies the found objects and the interpretation of the recall is how well the model
localizes the objects. The PR-curve is calculated by sorting each predicted bounding box according to
their confidence scores. We then calculate the recall and precision for each prediction. The results from
these calculations are plotted against each other.

The Average Precision (AP) Intuitively, the AP can be understood as the area under the PR-curve.
However, it is an approximation where we for each recall value take the maximum value of all previously
observed precision, which gives a more smooth function. Furthermore, we divided the PR-curve into 11

equally sized bins and average over these. This can more formally be written as

AP =

1

11

X

r2{0,0.1,...,1}

pinterp(r) (A.3)

p
interp

(r) = max

r̃:r̃�r
p(r̃) (A.4)

where p is the function that maps a recall to a precision and r̃ is all recall values greater than the current
recall value.

The mean Average Precision (mAP) The mAP is simply the mean of the AP for all classes.

mAP =

1

n

nX

i

AP
i

(A.5)

where n is the number of classes.
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