
State of the art uncertainty quantification

Bayesian Triplet Loss:  
Uncertainty Quantification in Image Retrieval

STEP 4: (assume independent dimensions)

STEP 7: (learn mean and variance for a, p, n)

STEP 5: (law of large numbers - surprisingly 
good approximation; see paper)  

STEP 1: (define likelihood for all triplets)

STEP 2: (define multimodal model) 

STEP 3: (define p using triplet notation) 

STEP 6: (find mean and variance) 

Overview Triplet Loss Bayesian Triplet Loss

● Learned uncertainty estimates in latent space

● A likelihood function on the latent space that 

follows the intuition of the triplet loss

● Comparable retrieval performance to SOTA

● SOTA uncertainty quantification in image retrieval
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Uncertainty quantification in image retrieval is crucial for 
downstream decisions. In this work, we present the 
Bayesian Triplet Loss, which is the probabilistic 
equivalent of the triplet loss and produces state-of-the-
art uncertainty quantification for image retrieval.


Likelihood Derivation

Intuition

Our method provides SOTA uncertainty estimates, while 
matching the predictive performance of the triplet loss. It 
associates high uncertainty to hard examples, like birds  that 
blend in with the background and are hardly discernible


We show on the large scale place recognition dataset, MSLS, 
that our model gives high uncertainty to challenging places w. 
harsh sunlight, blur and ambiguous tunnels.

We mirror the 
 triplet loss, and learn 

 stochastic features. We  
propose a likelihood that 

matches the triplet constraint 
and evaluates the probability of 

an anchor being closer to a 
positive than a negative.

Calibration Plot

The arrows below the figures indicate the gradient 
direction and magnitude of the means, while the arrows 
above the distributions indicate the gradients of the 
variances (downwards indicate more spread, upwards 
means more peaky)

The solid line indicates mAP@5 and the shaded area 
covers from mAP@1 to mAP@10. Note how, for both 
backbones, the Gaussian distributed embeddings are 
better calibrated, especially for uncertain queries.
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