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Abstract
This thesis considers the Simultaneous Localization And Mapping (SLAM) problem,
where the objective is to adapt and evaluate an open-source SLAM implementation
to the Tobii Pro Glasses 2.
It is important for companies, which use these glasses to collect data on consumer
behavior, to know the position and surroundings of the person wearing the glasses.
Based on a comparison of 34 open-source projects, it is considered that the most
auspicious implementation is the EKFmonoSLAM project. It is examined how this im-
plementation can be adapted to data from the glasses through camera calibration,
downsizing of the images by of factor 5, and reduction of the threshold for FAST-9
to 20.
Subsequently, the accuracy of the localization estimate is investigated. It is found
that the scaling is very dependent on the initial inverse Gaussian distribution de-
scribing the depth of the features and that EKFmonoSLAM is sensitive to fast rotations.
Through simulated data and image data, it is examined how the depth distribution
can be estimated.
Good results are obtained when the glasses are hand-held, but even with a good esti-
mates of the depth distribution, EKFmonoSLAM does not perform well when the glasses
are head-worn. In an indoor experiment, the relative cumulative error is estimated
to 125 % over a 12 meter distance. On the other hand, significantly better results
are obtained in an outdoor experiment where the relative cumulative error can be
reduced to 13 % over a distance of 104 meters.
Based on this empirical investigation, which includes extensive data-gathering, the
thesis concludes that even the apparently best open-source SLAM project does not
give sufficient precision to provide useful information about consumer behavior in a
indoor setting. Further research and development is necessary in order to solve the
SLAM problem for the Tobii Pro Glasses 2.
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Resumé
Dette bachelorprojekt omhandler problemet om simultan lokalisering og kortdannelse
(SLAM), hvor formålet er at tilpasse og evaluere en open-source implementation af
SLAM problemet for Tobii Pro Glasses 2.
For firmaer, der bruger brillerne til at opsamle data om kundeadfærd, er det vigtigt
at kende positionen og omgivelserne for personen, som har brillerne på.
Baseret på en sammenligning af 34 open source projekter er EKFmonoSLAM imple-
menteringen fundet mest lovende. Det gennemgås hvordan implementeringen kan
tilpasses data fra brillerne igennem kamera kalibrering, nedskalering af billedstør-
relsen med en faktor 5 og reducering af tærskelværdien i FAST-9 til 20.
Dernæst undersøges præcisionen af lokalitetsestimatet. Resultatet af undersøgelserne
viser, at skaleringen er meget afhængig af den indledende inverse normalfordeling,
der beskriver dybden af landmærkerne, og EKFmonoSLAM er følsom overfor hurtige
rotationer. Ved hjælp af simuleringer og billeddata er det undersøgt, hvordan dybde-
fordelingen kan estimeres.
Gode resulter findes, når billerne er håndholdt, men selv med gode estimater af dyb-
defordelingen performer EKFmonoSLAM ikke godt, når briller sidder på hovedet. I et
indendørs eksperiment fås den relative kumulative fejl til 125 % over en 12 meters
afstand. På den anden side fås væsentligt bedre resultater i et udendørs eksperiment
hvor den relative kumulative fejl reduceres til 13 % over en strækning på 104 meter.
Baseret på denne emperiske undersøgelse, som indeholder stor data indsamling, må
konkluderes, at selv det tilsyneladende bedste open-source projekt ikke giver tilstrække-
lig præcision til at give nyttig information om indedørs kundeadfærd. Videre forskning
og udvikling er nødvendigt for at løse SLAM problemet for Tobii Pro Glasses 2.
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CHAPTER 1
Introduction

Imagine drones delivering groceries through your window or driverless cars bringing
you to and from work. These are just two examples of autonomous mobile robots.
These autonomous robots have potential to revolutionize our way of life, our produc-
tion processes, transport systems, cities, and much more.

A technical challenge with autonomous robots is that they have to understand their
environment. It is crucial that the autonomous robots move and act safely in envi-
ronments and in situations of which they have no prior knowledge. They have to
understand and navigate safely in every conceivable situation.

This is referred to as the Simultaneous Localization And Mapping (SLAM) problem.
To solve the SLAM problem, the robot has to reconstruct a map of its environment
while maintaining information of its position within this map. The robot cannot
have any prior knowledge of the environment nor its starting position. Furthermore,
the SLAM problem has to be solved in real time requiring fast and efficient algorithms.

It is, therefore, crucial to have a stable solution to the SLAM problem to achieve a
future with autonomous robots.

1.1 Motivation
The Swedish Eye Tracking Company, Tobii Technologies, has developed the Tobii
Pro Glasses 2. These high-tech glasses are equipped with a front camera and gaze
vision such that the eye movement of the person wearing the glasses can be tracked.
Currently, these glasses are primarily used to tailor marketing of consumer products.
The glasses are mobile and thus experiments about consumer behavior can be tested
in real world settings. For instance, it is tested which products attract more atten-
tion on the super market shelves. However, the glasses are not incorporated with a
tracking system, thus valuable information about consumer navigation patterns are
not tracked. By developing smart software and solving the SLAM problem, it would
be possible to obtain more information about consumer behavior without adding ex-
tra sensors or increasing the cost of the glasses. This additional information could
potentially provide better consumer analysis.
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1.2 Overview
The objective of this thesis is to adapt and test how well an open source SLAM
implementation works with data recorded from the Tobii Pro Glasses 2. The thesis
consist of the following chapters which together represent the necessary step for this
evaluation.

Background

Chapter 2 serves three purposes. Firstly, to give some background information about
the hardware, the Tobii Pro Glasses 2. Secondly, to lay out the process of selecting
an adequate SLAM implementation for the glasses. An extensive comparison of 34
open source project are presented for readers with an interest in continuing working
on another SLAM implementation. And thirdly, to provide some general background
information about the chosen Matlab implementation, EKFmonoSLAM[Civ+10], and
the previous work and results obtained using this implementation.

Theory

Chapter 3 gives an introduction to the theoretical background of the chosen imple-
mentation, EKFmonoSLAM. Most importantly, this includes a thorough explanation of
the Extendend Kalman Filter, which serves as the backbone of this implementation, a
description of the inverse depth parametrization used to store and initialize features,
1-point RANSAC - a computational efficient robust estimation methods, and feature
matching with Normalize Cross Correlation and Active Search. Readers who are fa-
miliar working with SLAM systems or computer vision in general can go lightly over
Chapter 3, but note that the theory described in this section will serve as a backbone
throughout the thesis.

Experimental Design

Chapter 4 outlines the experimental design and considerations. The experimental
work is summarized and divided into a section on simulating data and a section on
video recordings using the Tobii Pro Glasses 2. The data from these recordings could
be useful for future studies.

Implementation

The purpose of Chapter 5 is to show how the results obtained by Civera et al. [JD06]
can be replicated using image data from the Tobii Pro Glasses 2. First, an overview of
the software, EKFmonoSLAM, is provided. Then, a detailed description and validation
of the camera calibration for the Tobii Pro Glasses 2 is given. Next, it is described
how an adequate downsizing of the recorded images is chosen, and subsequently it is
described why and how it is decided to reduced the thresholds for the feature detector
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in order to obtain a sufficient number of features. Finally, as a form of implemen-
tation validation, it is showed how Civera et al.’s results and experiments can be
replicated by hand held recordings from the front camera of Tobii Pro Glasses 2.

Results & Discussion

In Chapter 6, the results and findings of this thesis are presented and discussed. It is
found that the EKFmonoSLAM is very dependent on the initial inverse depth distribu-
tion of features and it is sensitive towards fast rotations. It is investigated how a good
prior inverse Gaussian distribution can be chosen and why the software is so sensitive
towards fast rotations. Finally, it is found that the software performs significantly
better outdoor where more distant features are found.

Future Work

In Chapter 7 it is discussed which improvements are necessary in the future work. It
is emphasized how sensor fusion could improve the stability of the solution.

Conclusion

In Chapter 8 the findings and conclusion of the thesis are presented.

1.3 Prerequisites
The thesis is written for a reader with basic knowledge of computer vision and statis-
tics, but, as was the case for myself when I began this study, with no particular
insight in neither SLAM, Extendend Kalman Filters, nor experimental work with
vision systems.

1.4 Notation
In this thesis matrices will be indicated by capital, bold letters F, vectors will be
indicated by a bold, italic letters x, and scalars will be written with italic letters a.
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CHAPTER 2
Background

The purpose of this chapter is to investigate which open-source SLAM project will
be most adequate for the Tobii Pro Glasses 2. First, Section 2.1 provides some
background information about the hardware of this project, the Tobii Pro Glasses 2.
Based on this knowledge, Section 2.2 argues why the EKFmonoSLAM implementation
is chosen, and in Section 2.3 the previous work and results with this implementation
will be described.

2.1 Hardware
The purpose of this section is to provide sufficient information about the hardware
to choose an adequate open-source software implementation.

Figure 2.1 shows an image of the head unit of the Tobii Pro Glasses 2. In these glasses
several sensors are included.

Figure 2.1: Head unit of the Tobii Pro Glasses 2 [Tob17].

The Tobii Pro Glasses 2 has a wide-angle lens located at the centre, between the eyes.
A wide-angle lens has a shorter focal length and thus allows more of the scene to
be included in the image. According to [Dav+04] a wide-angle lens in single-camera
SLAM ”demonstrate significantly improved SLAM results, with increased movement
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range, accuracy and ability to track agile motion”. Since the camera catches more of
the scene, landmarks will remains visible throughout larger camera movement. Thus,
the landmark density can be decreased and camera movement can be increased.

Also an IMU (a gyroscope and an accelerometer) is mounted between the eyes of the
glasses. The gyroscope measures the angular speed of the glasses in the 3 spatial di-
mensions and the accelerometer measures the acceleration in the 3 spatial dimensions.
These sensors can be used to collect additional data.

Based on the front camera of the Tobii Pro Glasses 2, it is decided to chose an
open-source SLAM project that solves the SLAM problem using only one camera.
Furthermore, it is wished that the chosen implementation can be extended to support
both data from the gyroscope and the accelerometer as these additional data source
could potentially provide a more stable solution. In the next section an open source
project will be chosen based on these requirements.
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2.2 Software Selection
Many pioneer SLAM researchers have provided source code for their projects. Thus,
based on the time limitation of the project and the many available open source imple-
mentations, it is assessed that it will provide a better result to adapt and modify an
already implemented SLAM project rather than developing and implementing a solu-
tion from scratch. This section will describe the process of choosing an appropriate
SLAM implementation and argue for the choice of software.

2.2.1 OpenSLAM.org
OpenSLAM.org is an online platform where SLAM researchers can share their SLAM
implementations. ”The goal of OpenSLAM.org is to provide a platform for SLAM
researchers which gives them the possibility to publish their algorithms.”[Bac17] As
of 2017, researchers have provided 34 different solutions of the SLAM problem to
OpenSLAM.org. According to OpenSLAM.org ”Published algorithm should have a
certain degree of robustness.”[Bac17] This statement provides a quality stamp for all
the projects. Furthermore, it is required that the source code of the projects are
provided for users to use and modify.

It is possible to find open source SLAM implementations elsewhere (e.g on GIT), how-
ever it is chosen only to investigate the SLAM implementation from OpenSLAM.org
because the variety and quality of the projects on this site are considered to be suffi-
cient for the purpose of this thesis.

2.2.2 Selection of software
By way of introduction, all the open source projects provided via OpenSLAM.org are
listed in table A.1 (Appendix). This table includes key stats about each implementa-
tion such as: Which core algorithm has been used, if the implementation supports 3D
modelling, what languages it is developed in, etc. The table also provide a short de-
scription of each project. Table A.1 gives an overview of the available SLAM projects
at OpenSLAM.org. Only readers who wish to work with their own open source SLAM
implementation need to visit this table.

Most of the projects at OpenSLAM.org use a version of an Extended Kalman Filter
(EKF) or Graph Optimization. It has been assessed that it will be more straightfor-
ward to use an EKF algorithm when using multiple sensor sources (a camera and an
IMU) because the extra data and input parameters can rather easily be included in
the model without changing the model structure. Therefore, it is decided to focus on
the implementations that use an EKF as the main algorithm.
The majority of the projects at OpenSLAM.org are implemented in C++ or Matlab.
It is preferred that the chosen SLAM project is implemented in Matlab over C++
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because Matlab is a high level language that makes it easier and faster to modify
projects. Furthermore, Matlab is good at handling images, it has fast vector calcula-
tions, and has several image toolboxes that make many image operations easy (E.g
the camera calibration toolbox).

Thus, it is chosen only to look at the implementations that are written in Matlab
and uses an Extended Kalman Filter as the main algorithm. In table 2.1 the five
OpenSLAM.org projects that comply with the algorithm and software requirements
are listed.
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Table 2.1: The table shows the open source implementations from OpenSLAM that use the EKF and are implemented

in Matlab. The content of the table originates from [Bac17]. In this thesis, the EKFMonoSLAM implementation
has been chosen as the foundation for a SLAM solution for the Tobii Pro Glasses 2. The EKFMonoSLAM has
been chosen because it support 3D modelling, it is the newest of the implementations, and it is written by
the well-acknowledged SLAM researches: Javier Civera and J.M. M. Montiel.

Hardware
and soft-
ware
require-
ments

Algorithm Author Input Data Type of map Release
Year

Description 3D
sup-
port

EKFMonoSLAM Matlab EKF Javier Civera and J.
M. M. Montiel

Monocular image
sequence and its
camera calibration

A sparse
3D map of
salient point
features

2010 EKFmonocularSLAM contains Matlab code for EKF SLAM from
a 6 DOF motion monocular image sequence. The algorithm takes
as input a monocular image sequence and its camera calibration
and outputs the estimated camera motion and a sparse map of
salient point features. The code includes state-of-the-art contri-
butions to EKF SLAM from a monocular camera: inverse depth
parametrization for 3D points and efficient 1-point RANSAC for
spurious rejection.

Yes

CAS-Toolbox Matlab EKF Kai O. Arras Sensor and odome-
try data

Feature
maps

2007 This software is a GNU GPL licenced Matlab toolbox for robot
localization and mapping. It is made for research and education
and independent on the type(s) of feature and type(s) of sensors/
It can import a number of data file formats from any sensor. It
allows you to plug in and out your feature extraction, odometry
model, data association strategy, etc. and to plug in and out your
SLAM or Localization approach. It furthermore comes with a
number of useful tools and functions.

No

CEKF-SLAM Matlab Compressed
Extended
Kalman
Filter

Haiqiang Zhang
and Lihua Dou

Sensor and odome-
try data

Feature
maps

2007 CEKF-SLAM was originally proposed by Jose Guivant and Ed-
uardo Net. This algorithm reduces the computational complexity
by dividing the system state vector into two parts: the active local
state vector and the others. Only the local state vector is updated
for each step by EKF, and the necessary information for updating
the other states is compressed into some auxiliary cofficient ma-
trices. When the local area changes, a full update was executed
to get the same estimation results as EKF.

No

Pkg. of T.Bailey Matlab EFK, UKF,
FastSLAM1,
and Fast-
SLAM2.

Tim Bailey Sensor and odome-
try data

Feature
maps

2007 This package is a collection of implemented SLAM approaches by
Tim Bailey. The code is written in MatLab and performs EFK,
UKF, FastSLAM 1, and FastSLAM2.

Unknown
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Table 2.1 shows that EKFMonoSLAM is the only one of these projects that supports
3D models. The EKFMonoSLAM is implemented by Javier Civera and J. M. M. Mon-
tiel. The fact that EKFMonoSLAM is implemented by these two acknowledged SLAM
researchers advocates for a well written, robust, and efficient implementation. Fur-
thermore, EKFMonoSLAM is the newest of the projects listed in the table.

The EKFMonoSLAM project is chosen as the most adequate SLAM solution to the Tobii
Pro Glasses 2. It is chosen based on the EKF algorithm, the Matlab implementation,
the 3D modelling abilities, and the well acknowledged authors. The next section will
outline some of the most contributing ideas of this project.
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2.3 Related work
This section will highlight and summarize the results and findings from four significant
papers related to the selected software, EKFmonoSLAM. The authors of the software,
Civera and Montiel, have contributed to the three last mentioned articles and the
main ideas described in these articles are all a central part of the software implemen-
tation. It is important to be aware of their findings, failures, and results in order
to use and understand the software properly. This section will give an overview of
the results and main ideas for the four articles, while the theory will be explained in
chapter 3.

Cameras are a popular sensor to use to solve the SLAM problem because of the high
information level in images and the low cost of cameras. As early as in 2003 it was
demonstrated by Davison [Dav03] that it is possible to solve the SLAM problem using
just one camera, and thus the SLAM problem can potentially be solved by the front
camera of the Toii Pro Glasses 2. Since Davison’s discovery several researchers have
contributed to the development of more sophisticated algorithms.

Civera et al. suggest in 2006 [JD06] (and in a more refined article in 2008 [JM08]) to
parametrize point features using inverse depth coordinates instead of Euclidean coordi-
nates. Through experimental work it is verified that this alternative parametrization
have several advantages. It enables an unified representation of very distant and close
points, it enables an uncertainty estimate of distant points, and it allows undelayed
initialization. By using a linearity index, Civera et. al. are able to deal with low
and high parallax features simultaneously without a binary decision tool. The only
drawback of this inverse depth parametrization is that it requires six dimensions to
represent a feature as opposed to three when using Euclidean coordinates. It is found
that these additional dimensions have a 4-fold increase on the computational cost.
However, if the number of features is kept under 100, it is still possible to obtain
real-time performance.

In 2010 [Civ+10], Civera et al. showed that the dimensions of the robust estimation
method, RANSAC, can be reduced to just one point by incorporating prior informa-
tion from the Extend Kalman Filter framework. Reducing the dimensions to just one
point as opposed to five points, which according to [Nis04] is the lowest number of
points required to estimate the motion between two frames of a 6 degree of freedom
camera, has huge computational savings. Through experimental work, Civera et. al.
find that the overhead of 1-point RANSAC is less than 10 % which makes it suitable
for real time implementations. Furthermore, Civera et. al. showed that the the errors
of the trajectory path of large outdoor experiments was around 1 % when parred with
wheel odemetry.

This section has presented the three most important and contributing ideas behind
the EKFmonoSLAM implementation, namely single camera SLAM, the inverse depth
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parametrization, and the 1-point RANSAC method. Furthermore, it was outlined
that Civera et. al. have obtained good results and real-time performance using the
chosen EKFmonoSLAM Matlab implementation.

Chapter 2 has provided some background information about the Tobii Pro Glasses
2. It has been chosen to adapt and modify the EKFmonoSLAM solution to the SLAM
problem. The three ideas most contributing for this software implementation, single
camera SLAM, the inverse depth parametrization, and the 1-Point RANSAC, have
been outlined. The next chapter will give a more thorough and theoretical explanation
of these important ideas.



CHAPTER 3
Theory

This chapter explains the theory behind the EKFmonoSLAM implementation. First,
some important theory about camera geometry is presented in Section 3.1 as these
insights will be a central part of the understanding of the thesis and implementation.
Then, in Section 3.2, a thorough explanation of the inverse depth parametrization
of the landmarks is given. Following, the usage of quaternions is justified in Section
3.3. After establishing these concepts, the Extendend Kalman Filter is explained in
three parts in Sections 3.4, 3.5, and 3.6. First, the basic idea behind the state space
representation is explained and it is described how the inverse depth parametrization
is used in this setting. This leads to an explanation of the two steps of the Extended
Kalman Filter: Predict and update. Finally, a thorough description of the measure-
ment operator used in EKFmonoSLAM is provided.
The chapter ends with an explanation of the theory behind the feature detection
method, Features from Accelerated Segment Test (FAST) in Section 3.7, the match-
ing method, Normalized Cross Correlation with Active Search in Section 3.8, and the
robust estimation method, 1-Point RANSAC in Section 3.9.
As mentioned previously, readers familiar with the above described computer vision
concepts can go lightly over this chapter.

3.1 Camera Geometry
The purpose of this section is to define the mathematical notation of two important
models: The pinhole model and the homography. The pinhole model is fundamen-
tal to understand when working with cameras as this model explains how points are
projected from 3D world coordinates into the 2D image plane. This model, and the
parameters within it, will be referred to throughout the thesis. The notation of the
homography is also outlined as this special case of the pinhole model is used in the
camera calibration (Section 5.2). For a more detailed explanation of these models,
the reader is referred to [Aan15].

A homogeneous 3D point Qj in world coordinates is projected into the 2D image
planes as a point via the pinhole model [Aan15].

qi = A[R t]Qj = PQj (3.1)
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where qi is a 2D homogeneous point in the image plane, Qj is the corresponding 3D
homogeneous coordinate, A is the internal camera parameters, R is the rotation, t is
the translation, and P is the camera matrix which is defined by P = A[R t].
The internal camera matrix A can be written as

A = ApAq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f 0 0

0 f 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 β u0

0 α v0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f β u0

0 fα v0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where f is the focal length, α and β describe the affine image deformation (these are
set to respectively 1 and 0 [Aan15] [JM08]), and u0 and v0 are the principal point
offsets.

Furthermore, wide-angle lenses, as the front camera in the Tobii Pro Glasses 2, are
often distorted. This distortion can be described by the distortion parameters κ1 and
κ2 whose values results in the effects shown in Figure 3.1.

Figure 3.1: The figure shows the barrel and pincushion distortion of an square
[Cyr17].

Note that when using the pinhole model 3.1 at least two images of a point are necessary
to find the 3D position of the point [Aan15]. However, it is possible to solve equation
3.1 using only one image by adding the extra constraint that all points in the image
lie in the same plane. This extra constraint reduces the 3D point Qj to a 2D point qj .
This extra constraint makes it possible to estimate the position of qj from a single
image of this point. This is referred to as a homography [Cyr17].

qi = Hqj = P [ A B C

0 0 1
] qj (3.2)

where qj is the observed 2D point, qi is the corresponding 2D point projected onto
the image plane, P is the camera matrix, and H is the homography that forces the
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2D point qj to be in the plane spanned by the vector [A, B, C].
This point-to-point relationship and the decreased complexity compared to 3.1 makes
the homography very desirable in camera calibration. Note that the homography 3.2
has to be solved as a minimization problem because of measurement errors. This
is done by minimizing the difference between the qj points mapped into the image
plane by H and the points in the image plane qi.

min
H

∑
i

∣∣Π(qi) − Π(Hqj)∣∣22 (3.3)

where Π is the operator that maps homogeneous coordinates to an inhomogeneous
coordinates. This can be expressed in 2D like Π([x, y, s]T ) = [x

s
, y

s
]T = [x, y]T .

This section has outlined the notation for both the pinhole model and the homography.
The theory on the pinhole model will be referred to throughout the thesis, while the
theory on the homography will primarily be used in the section on camera calibration
(Section 5.2).
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3.2 Inverse Depth Parametrization
This section will describe the inverse depth parametrization of landmarks presented
by Civera et al. [JM08]. The desirable properties with the inverse depth parametriza-
tion is that it allows representation of points at infinity, it permit an unified handling
and representation of close and distant features, it enables an uncertainty estimate of
distant points, and it allows undelayed initialization of the Extended Kalman Filter
(EKF).

The first real-time monocular camera SLAM solution by Davison [Dav03] used Eu-
clidean coordinates to represent observed features. The Euclidean representation of
features raised a problem for features at low parallax1 because the EKF expected the
estimated position uncertainty to be Gaussian distributed. However, the uncertainty
estimate was inverse Gaussian distributed (Figures B.2 and B.3 in appendix). The
flat tail of this distribution made it very difficult to determine whether a low parallax
feature had a depth of 10, 100, or 1000 units. Therefore, Davison’s original solution
did not use distant features. This is a huge disadvantage because these low parallax
features are very important to determine the rotation of the camera [JM08].

The EKF assumes that the observed landmarks have Gaussian distributed errors,
which unfortunately is not the case when points are observed at low parallax. One
approach to deal with these non Gaussian distributed errors suggests a delayed ini-
tialization of features observed at low parallax[BS05]. The features at low parallax
are dealt with separately of the main map. Information about these features is ac-
cumulated over several frames to reduce uncertainty before inserting them into the
main map. The drawback of this approach is that the features do not contribute
to the camera localization until they are inserted into the main map. Furthermore,
”features at low parallax are often rejected”[JM08]. These low parallax features bears
little information about the translation of the camera, but are very important to es-
timate the rotation of the camera. Thus, plenty of valuable information gets lost.

The inverse depth parametrization proposed by Civera et al. [JM08] cope with the
issues of non Gaussian distributed position estimates. It enables undelayed initializa-
tion while coping with features at any depth. An important drawback of inverse depth
parametrization is an extra computational cost. The inverse depth parametrization
uses six coordinates to represent a point instead of three as in Euclidean coordinates.
This means that a 3D point Qi is represented in inverse depth coordinates as

Qi = [xi, yi, zi, θi, ϕi, pi]T (3.4)

where [xi, yi, zi]T is the initial position of feature i described in the Euclidean co-
ordinates. [θi, ϕi, pi]t describe the current position of feature i relative to its initial

1The depth of the feature is high compared to the translation between the camera position at
frame 1 and frame 2.
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position in spherical coordinates. θi and ϕi is the azimuth and elevation and pi is the
depth. Figure B.4 in appendix describes the relation between spherical and Euclidean
coordinates.

The relationship between Euclidean coordinates and the inverse depth parametriza-
tion can be described by:

Qi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Xi

Yi

Zi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xi

yi

zi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
1
pi

m(θi, ϕi) (3.5)

where m(θi, ϕi) = [cos ϕi sin θi,− sin ϕi, cos ϕi cos θi]T . Thus m(θ, ϕ) determines the
direction from the initial location [xi, yi, zi]T to the observed location [Xi, Yi, Zi].
The inverse depth 1

pi
determines the distance between the two points along this di-

rection. It is important to note that the inverse depth is given by d = 1
p

so when
p → ∞ the inverse depth 1

p
→ 0. This is very useful because computers are much

better handling 0 than ∞.

The relationship in equation 3.5 is showed in Figure 3.2. This figure shows how a
point is represented with the inverse depth parametrization.

Figure 3.2: The figure describes how a point is described with inverse depth
parametrization. The point is first observed at ■ represented by[xi, yi, zi]T . The point’s position is represented relative to this initial
position by the inverse depth parametrization (Equation 3.5).
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As mentioned, the inverse depth representation makes the position estimate of features
at low parallax Gaussian distributed. Figure 3.3 shows the probability distributions of
features represented with Euclidean coordinates (a) and inverse depth representation
(b).

Figure 3.3: The figure shows the probability distributions of a point observed at one
camera projected into the image plane of another camera. Subfigure (a)
shows the probability distribution when the point is represented with
Euclidean coordinates and subfigure (b) shows the probability distribu-
tion when the point is represented by inverse depth coordinates. Note
that the distribution of the projected point in subfigure (b) is Gaussian
distributed [JM08].

In figure 3.3 (a) a point is observed by the camera to the right. According to epipolar
geometry, the depth to this point is unknown. When the same point is observed
by the camera to the left, the point is known to lie on the epipolar line and this
constraint can be used to estimate the depth of the point. However, because of the
assumption of Gaussian distributed measurement noise the position estimate also be-
comes Gaussian distributed. Thus, when constructing the epipolar line by projecting
this Gaussian distribution onto the image plane of the left camera the depth estimate
becomes inverse Gaussian distribution. This is an issue for low parallax features when
initializing the EKF.
The same setup is showed in (b), however here the inverse depth parametrization is
used. Again, the measurement noise is assumed Gaussian, but because of the inverse
depth parametrization the estimate becomes inverse Gaussian distributed. When pro-
jecting this inverse Gaussian distribution onto the image plane, it becomes Gaussian
distributed [JM08]. This means that the point can be correctly initialized in the EKF.

The inverse depth parametrization relative to the camera location from which they
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were first observed has the advantage of Gaussian distributed position estimates. This
allows for undelayed initialization of the EKF. Furthermore, the inverse depth copes
better with points at infinity because these are represented as zeros.

The drawback is the extra computational cost of using six parameters. The EKFmonoSLAM
solution reduces this extra cost by converting high parallax features into Euclidean
coordinates. According to [JM08] ”there is no penalization in accuracy” for this con-
version.

Thus, the inverse depth parametrization has several advantages: it enables represen-
tation of points at infinity, and it allows undelayed and unified initialization of the
EKF for both close and very distant point.
Another alternative number representation used by Civera et al. is quaternions. The
quaternions are advantageously used to represent rotations in EKFmonoSLAM and will
be explained in the next section.
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3.3 Quaternions
Throughout the EKFmonoSLAM implementation, Civera et al. use quaternions to han-
dle rotations. The objective of this section is to explain the concept of quaternions
and argue why quaternions are a better choice for handling rotation than the well
known matrix implementation.

In EKFmonoSLAM, quaternion are used to define the camera orientation in the state
vector. The intuition behind a quaternion is that it represents the rotation as an
angle around an arbitrary rotation axis. More formally, a quaternion consist of four
numbers: A number q0 that describes the scaling, a number that describe the angle
that the vector should be rotated, and two numbers that give the plane in which the
vector should be rotated [EL98]. This can be expressed as

q0 + qxi + qyj + qzk

where q0, qx, qy, qz are real numbers and i, j, k are the quaternion units. For short
quaternions are often represented as [q0, v] where q0 ∈ R and v = (qx , qy , qz) ∈ R3.

Dam et al. [EL98] highlight several disadvantages with the well known matrix repre-
sentation. These are shortly summarized.

1. Lack of intuition: It is rather tedious to rotate about an arbitrary axis using
homogeneous rotation matrices.

2. The order matters: When using two rotations, the order of which these are
applied have importance for the result.

3. Gimbal lock: It is possible to make series of rotations where one degree of
freedom is lost from the general rotation matrix. This results in a degenerated
rotation matrix that can only rotate about two axis.

4. Ambiguous correspondence to rotations: It is difficult to solve the inverse
problem and in general there is no unambiguous solution to the inverse problem.

5. Representation is redundant: The general homogeneous rotation matrix
uses 16 places for the necessary four dimensions. Furthermore, there are 6 zeros
in this matrix.

The primary advantages with the matrix representation is that translation, projec-
tion, and other basis transformations can be represented in the same homogeneous
matrix.

This leads to the main disadvantage with quaternions. Quaternions can in practice
only represent rotations. According to [EL98], it is possible to represent translation,
but not as elegant as with the matrix representation. Quaternions are therefore in
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practical circumstances only used to represent rotations.

However, Dam et al. point out several advantages with quaternions. These are listed
in short.

1. Obvious geometrical interpretation: Quaternions represent rotation as an
angle around a rotation axis, which gives a more intuitive and elegant interpre-
tation of rotation than the matrix representation.

2. Unambiguous mapping: The mapping between quaternions and Euler angles
is unambiguous, except every angle can be represented by two quaternions. The
reason is that angles comes in pairs and the two quaternion representations
depend on which way you rotate about a given axis.

3. Coordinate system independence: The choice of coordinate system does
not influence the rotation from the quaternions.

4. Compact representation: Quaternions use only four dimensions to represent
the rotation.

5. No Gimbal lock The Gimbal lock problem does not appear with quaternions.

6. Intuitive composition: It is straight forward to apply rotation q1 followed
by rotation q2. This is done just by rotation with the product of these q2q1.

As outlined the advantages of using the quaternions outweigh the disadvantages com-
pared to using the well known matrix representation. Dam et. al. [EL98] believe that
it is primary based on historical reasons that the matrix representation is still used.
The main disadvantages with using the matrix representation is that it is tedious and
troublesome that rotation must be expressed as rotation about three explicit axes,
where the order is important. Furthermore, Gimbal lock can be encountered. These
disadvantages are handled by using the quaternions which gives a more intuitive rep-
resentation of angles and avoid Gimbal lock. Also, quaternions give a more compact
and efficient representation of angles. Based on these findings Dam et. al. conclude
that quaternions are superior to the well known matrix representation for represent-
ing rotation.

In this section, the advantages and disadvantages of quaternions and the well known
matrix are summarized. Hopefully, these arguments make it clear why quaternions
are preferred in EKFmonoSLAM over the well known matrix representation.

Now that the concepts of the inverse depth parametrization and the quaternions
have been established we can move on to the core of the EKFmonoSLAM implementa-
tion, namely the Extended Kalman Filter (EKF). In order to properly explain the
EKF, it is necessary to establish the state space representation.
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3.4 State Space Representation
A state space representation is a formulation where the state of an object, in this
case the camera and the landmarks, is set up as a vector and seen as a function of
previous state values and model parameters. This can be described by the transition
equation

xk+1 = Fxk (3.6)

where x is the state vector and F is the transition matrix that make a one step pre-
diction. Thus, F sends the state vector from step k to step k + 1.

When modelling the SLAM problem, it is assumed that the glasses are moving, while
the landmarks are stationary. Thus, it is wished to model the glasses and the land-
marks differently. First, the modelling of the glasses is described and then the mod-
elling of landmarks is described.

3.4.1 Transition Equation of the Camera
To model the state of the Tobii Pro Glasses 2, the state vector is composed of the
position g, the orientation q, the linear velocity v, and angular velocity ω of the
glasses.

xg = [g, q, v, ω]T = [gx, gy, gz, qo, qx, qy, qz, vx, vy, vz, ωx, ωy, ωz]T (3.7)

where xg is the state vector for the glasses. Note that the orientation is represented
with the quaternion q.

By using this state vector (Equation 3.7), the transition equation to model the glasses’
movement with constant linear and angular velocity can be describes as

x
k+1
g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
gk+1

qk+1

vk+1

ωk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= F1 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
gk

qk

vk

ωk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
gk + vk∆t

qk × q(ωk∆t)
vk

ωk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.8)

where q is the quaternion of ωk∆t. This transition equation is less general than de-
scribed in [JM08], because it assumes constant linear and angular velocities. Thus,
v and ω do not vary over time. It is seen that this transition equation is non linear.
The reader, interested in the linearization of the transition equation, is referred to
Appendix C.
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3.4.2 Transition Equation of the Landmarks
It is assumed that the landmarks are stationary, thus the linear and angular velocity
are zero. Furthermore, the landmarks are modelled as point features, so they do
not have an orientation. Therefore, the state vector describing a landmark can be
expressed in Euclidean coordinates as

xl, E = [x, y, z]T (3.9)

and in inverse depth coordinates as

xl, ID = [x, y, z, θ, ϕ, ρ]T (3.10)

where xl, E and xl, ID is the state vector describing a landmark in respectively Eu-
clidean and inverse depth coordinates.

Because of the assumption of stationarity, the transition equation for the landmarks
in Euclidean coordinates becomes

xk+1
l, E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x

k+1

y
k+1

z
k+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = F2 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x

k

y
k

z
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x

k

y
k

z
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.11)

where F2 is a 3x3 identity matrix. And the transition equation in inverse depth
coordinates becomes

xk+1
l, ID =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
k+1

y
k+1

z
k+1

θ
k+1

ϕ
k+1

ρ
k+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= F3 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.12)

where F3 is a 6x6 identity matrix. The superscript indicate the time step, and the
subscript indicate the spacial dimension. This transition equation models the posi-
tion of a landmark as stationary.

To solve the SLAM problem, we need to model the location of the glasses and the posi-
tion of the landmarks simultaneous. Therefore, the system’s state vector is composed
of the state vector for the glasses xg and for each observed landmark xl.

x = [xT
g , xT

l1 , xT
l2 , xT

l3 , ... xT
ln
]T (3.13)
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where x is the system’s state vector. Note that this vector change size depending on
how many landmarks have been observed.

As the concept of the state space representation has been established the EKF can
be explained.
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3.5 The Extended Kalman Filter
The state space representation, described in the previous section, is the underlying
model of the camera state and landmark position. Neither of this information is given
to begin with, thus the parameters of the model will be recursively updated based
on the observed landmarks as time progresses. Some noise is associated with the
observed position of a landmark and as the camera position is dependent on these
noisy observations the entire state space model will be noisy. The goal of the Ex-
tended Kalman Filter (EKF) is to reduce the Gaussian noise from the observed data
by weighing the model against the observations. This section will describe the process
of the EKF in more detail.

The EKF is one variation of the Kalman Filter, which applies for non linear state
space representations [Mad07]. The state space representation described in the previ-
ous section is highly non linear because of the varying orientations of the camera. The
EKF linearize the transition operator (shown in Appendix C) and the measurement
operator by differentiating these with respect to the state vector. After linearizing
the system, a Kalman Filter is applied to estimate the states of the system.

The EKF is is well suited to the SLAM problem and widely used by SLAM researches
[Bac17]. It has a recursive structure that allows real-time execution without requiring
lots of memory. This recursive structure allows the EKF to correct itself and take
advantage of new observations.

This section will describe in more detail how the EKF works and how it is applied
to SLAM. The recursive structure of the EKF is explained by two steps: Predict and
update.

3.5.1 Predict
In the prediction stage, the EKF uses the current state of the system to predict the
next state. Thus, the generic transition equation 3.12 becomes

xk+1 = Fxk + Γϵk (3.14)
where xk+1 is the predicted state vector. Γϵk has been added compared to equation
3.12 with Γ being the error operator and ϵ being Gaussian noise describing the model
error.

The EKF also calculates the uncertainty measure of this prediction which can be
expressed as

Pk+1 = FPkFT + ΓQkΓT (3.15)
where P is the state covariance matrix and Qk is the covariance matrix for the errors
described by ϵk.
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3.5.2 Update
The EKF is used to update a model by incorporating information about incoming
observations. The incoming observations have a measured uncertainty and thus can
be described as

z = zo + r (3.16)
where zo is the true position of the observed landmark, r is Gaussian distributed noise
related to the measurement error, and z is the measured location of the landmark.

This observation is compared to the model’s estimate of this landmark. This is done by
first mapping the model state, the 3D position of the landmark, to the measurement
space, the 2D image plane.

h = Hxk+1 (3.17)
where H is the measurement operator that maps from the model space to the mea-
surement space. The size of H is the number of sensor dimensions times the number
of states. In this case, the sensor dimensions equals 2 (the image plane) and the num-
ber of state equals 13 state from the camera plus 3 for each landmark represented in
Euclidan coordinates plus 6 for each landmark represented in inverse depth coordi-
nates.

The information of the observed landmarks is weighted against the model estimate of
the respective landmarks with the Kalman gain. The Kalman gain is essentially a vec-
tor that is computed as the observation uncertainty divided by the system uncertainty
(the uncertainty of the model and the observation).

K = Pk+1HT (HPk+1HT + Rk)−1 (3.18)

where R is the covariance of the uncertainty of r.

The state vector can be updated by multiplying the Kalman gain to the difference
between the measured and estimated location. This is known as the innovation.

xk+1 = xk + K (z − h) (3.19)
Since the information about the measurements have been incorporated in the uncer-
tainty, the state covariance matrix also has to be updated.

Pk+1 = Pk+1 − KHK
T (3.20)

Thus, from this equation it is seen that the state uncertainty is lowered relative to
the Kalman gain.

This section have described the recursive structure of the EKF and the transition
equations for both the camera and the landmarks. The next section will explain the
measurement operator H used in the EKFmonoSLAM implementation.
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3.6 Measurement operator
This section will describe in more detail how the measurement operator from Equation
3.17 maps from the model space to the measurement space in this SLAM implemen-
tation.

In this implementation, landmarks are modelled in 3D world coordinates, but mea-
surements are in the 2D image plane in camera coordinates. Thus, in order to compare
these two, we need to identify the measurement operator that maps from model space
to measurement space (Equation 3.17).

To go from the model space to the measurement space we first need to go from world
coordinates to camera coordinates. If the landmark position is modelled in inverse
depth this is done by

h
Ck

i,ID = RCk

W

⎛⎜⎜⎜⎜⎜⎝ρi

⎛⎜⎜⎜⎜⎜⎝
Xi

Yi

Zi

− g
W
Ck

⎞⎟⎟⎟⎟⎟⎠ + m(θW
i , ϕ

W
i )⎞⎟⎟⎟⎟⎟⎠ (3.21)

and if the landmark is modelled in Euclidean coordinates, it is done by

h
Ck

i,E = RCk

W (yW
i,E − g

W
Ck

) (3.22)

where RCk

W represent the rotation matrix computed from the state quaternion q
W
Ck

.
The features are translated into camera coordinates by subtracting with g

W
Ck

, and
they can be projected onto the image plane by using the pinhole model.

hu = ( uu

vu

) =
⎛⎜⎜⎜⎜⎝

u0 −
f h

C
x

dx hC
z

v0 −
f h

C
y

dy hC
z

⎞⎟⎟⎟⎟⎠ (3.23)

where f is the focal length, (u0, v0)T are the principal offset, and dx, dy which are
the ratio between the image size and the chip size. The image plane is distorted, thus
we need to convert the undistorted coordinates [uu , vu] into distorted coordinates[ud, vd] by using the two parameter model

( uu

vu

) =
⎛⎝ u0 + (ud − u0)(1 + κ1r

2
d + κ2r

4
d)

v0 + (vd − v0)(1 + κ1r
2
d + κ2r

4
d) ⎞⎠ (3.24)

where rd =
√(dx(ud − u0))2 + (dy(vd − v0))2 and κ1, κ2 are the two distortion pa-

rameters.

Thus, the measurement operator is most intuitively described in three steps: From
world coordinates to camera coordinates, from 3D point to 2D point, and then from
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the undistorted image plane to distorted image plane. All three steps are non linear
and have to be linearized in order to put the measurement operator on the form as
in Equation 3.17.

To summarize: The core of the EKFmonoSLAM implementation, the Extended Kalman
Filter, has been explained in two step: Predict and update. The state space repre-
sentation and transition operator for both the camera and the landmarks have been
explained. Also, the measurement operator that maps from model space to the mea-
surement space has been explained. The remaining part of this chapter will deal with
detecting intrinsic features and matching these features between frames.
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3.7 Feature Detector
To obtain real time SLAM for the Tobii Pro Glasses 2, it is important with fast and
efficient algorithms. The Features from Accelerated Segment Test (FAST) has been
developed by Rosten et al. [RD05] with speed and efficiency in mind. According to
[RD05] the FAST algorithm has a pixel rate of 179, whereas other feature detectors
like Harris Corner detector and DoG have respectively a pixel rate of 7.90 and 5.10.
Thus, FAST is considerably faster.

3.7.1 Features from Accelerated Segment Test (FAST)
The FAST algorithm works by selecting a pixel C with intensity IC . A Bresenham’
circle of radius 3, thus containing 16 pixels (numerated 1 to 16 in Figure 3.4) is drawn
around the centre point C. The criteria of defining C as a feature is that the intensity
of N contiguous pixels out of the 16 need to be either above IC + T or below IC − T
where T is a specified threshold. To improve the speed of the algorithm, the intensity
of pixel 1, 5, 9, 13 are first compared with the IC . If less than two of these points
satisfies the threshold criterion, then C is not a feature. Otherwise, if the threshold
criterion is satisfied for two or more of these points, the threshold criterion is checked
for all 16 points. This process is repeated for all points.

Figure 3.4: The figure to the right shows a zoom of an interest point with a Bre-
senham’ circle with radius 3. The 16 pixels in the circle are numerated
[RD05].

The feature detector applied in the EKFmonoSLAM implementation is FAST-9. Thus,
9 contiguous point out of the 16 in the Bresenham’ circle has to be either above or
below the threshold criterion. Alternatively, FAST-10, FAST-11, or FAST-12 could
be applied. However, FAST-9 has been shown to give the best results compared to
speed[Ros+08].
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Many adjacent features are detected. These adjacent features bears nearly the same
information about the image, thus we are only interested in the most significant fea-
ture in a small neighborhood. This can be obtained by applying a non maximum
suppression to the found features.

The FAST algorithm does not compute a corner response function, thus the non
maximum suppression cannot be used directly. However, a score function V can be
calculated for potential feature points as the sum of the absolute difference between
the pixel value of the center pixel IC and the pixel values In of the N contiguous
pixels [Vis17].

V = ∑
n∈N

∣In − IC∣ (3.25)

The score function of adjacent features are compared and the feature with highest
score function within a mask of 3x3 pixel is chosen as the feature point [Ros+08].
Thus, removing the features that are directly next to each other.

This section has explained that the FAST-9 algorithm classifies a point as a feature
if 9 contingous points of the 16 points in the Bresenham’ circle satisfy the threshold
criteria. The algorithm is very fast and therefore well suited in the SLAM framework.
To obtain high repeatability Rosten et al. [RD05] suggest between 500 - 1500 features
per frame.
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3.8 Feature Matching
EKFmonoSLAM uses Normalized Cross Correlation (NCC) with Active Search to match
features. This method is used because it is fast and rather intuitive. This section will
describe the idea behind standard NCC and the NCC with Active Search suggested
by [CD08].

3.8.1 Normalized Cross Correlation
Normalized Cross Correlation (NCC) is a widely used algorithm to match features.
It is simple, it can be used in many different applications, and it is fast compared
to other feature matching algorithms. The basic idea of NCC is to use the patches
associated with each feature as descriptors, and then use the correlation between the
pixel values in the patches as a measurement of how alike the two features are. The
features where the descriptors have the highest correlation are matched [Aan15].
NCC have some drawbacks. If there is little variance in the image, the noise will be
dominant. Thus, to achieve correct matches it is necessary that the patch have vari-
ance in two directions to avoid that the motion direction is ambiguous (the Aparture
problem). Also, the correlation is sensitive to image rotations and changes in scale.

3.8.2 Active Search
When matching features between sequential images there is a physical constraint to
how far two correctly matched features can lie from each other. E.g most often it
is not necessary to search for a match in the upper left corner if a feature has been
detected in the lower right corner.

Active Search exploit this prior knowledge and tries to search only in those parts of
the image where true matches are most probable. By only searching in these areas
it is possible to reduce the processing operations required to achieve global matching
by a factor of 4 to 8 [CD08].

The Active Search method suggested by [CD08] use the uncertainty information in
the covariance matrix from the EKF as a prior knowledge of where to search for
matches. As the state vector and covariance matrix are updated, the search regions
are likewise updated. Thus, areas with low probability of a match are never examined.

Thus, if the uncertainty of a feature (measured as the eigenvalues of the uncertainty
matrix of the predicted measurement h) is big, it is not wished to search for a match
in this region. However, if the uncertainty is less than a certain threshold the search
region is accepted. Thus, for a low threshold only small search areas are included.
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This section has described the main idea behind NCC with Active Search. This al-
gorithm is used in EKFmonoSLAM because it is fast. In the next section, it will be
explained how more robust matches are obtained without adding too much computa-
tional overhead.
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3.9 Robust Estimation Methods
In the EKFmonoSLAM implementation, a robust estimation method is applied after
the NCC with Active Search which leads to more reliable matches. Robust estima-
tion methods such as Random Sample Consensus (RANSAC) checks the consistency
of matches against a global model, and thus is able to discard incorrect matches.
RANSAC is one of the most successful robust estimation methods in the computer
vision community[Civ+10].

This section will comment on the differences between standard RANSAC and 1-Point
RANSAC suggested by Civera et al.[Civ+10]. For simplicity this comparison is done
in 2D.

3.9.1 Standard RANSAC
RANSAC aims to efficiently find the model with highest support from the data. Fig-
ure 3.5 shows the idea behind RANSAC. In this case the model is a line, thus two
points are the minimum number of points necessary to estimate the model. The min-
imum number is preferred because it reduces the odds of fitting with an outlier. Two
random points are drawn and used to estimate the model. The support (consensus)
of the model is counted. The model with highest consensus is chosen. The points
outside the confidence intervals of this line are considered outliers while the points in-
side the confidence intervals are considered inliers. Finally, the model is reestimated
using all the inliers.

The number of hypothesis nhyp that should be made to get a model that is not esti-
mated by outliers is found with probability p by

nhyp = log(1 − p)
log(1 − (1 − ϵ)m) (3.26)

where ϵ is the outlier ratio and m is the minimum number of points in order to esti-
mate the model. The outlier ratio is calculated as the support of the model divided
by the total number of points. This changes for each model, thus the number of
hypothesis is recalculated for each iteration.

3.9.2 1-point RANSAC
In SLAM, we have sequential structure from motion (video), thus the frames are
taken shortly after each other, and therefore approximately from the same position
and angle. This prior information can be used to reduce computational cost of the
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Figure 3.5: RANSAC steps for the 2D line estimation. In step 1, random hypoth-
esis of sample size two, the minimal number to form a line, is drawn.
Then, the line with highest consensus (most votes) is chosen. In step 2,
the point outside a confidence intervals are considered outliers and the
points inside are considered inliers. In step 3, the model is re-estimated
only using inliers [Civ+10].

standard RANSAC algorithm. With this prior information, Civera et al. showed that
it is only necessary to use 1 point to estimate a model[Civ+10]. E.g. in Figure 3.6,
where the prior information is illustrated as a line with confidence intervals. Step 1
of Figure 3.6 shows that the models are forced through a drawn point and the prior
lines x-intercept. Thus, just 1 point can be used to estimate a model.

By using 1-Point RANSAC the computational cost is drastically reduced. To illus-
trate this cost reduction Equation 3.26 is used. According to [Nis04], minimum 5
points are necessary to estimate the correspondence between two camera frames in
a 6 DOF. Assuming an error ratio ϵ = 0.4 and a probability p = 0.99, we get from
Equation 3.26 nhyp = 57. When using 1-point RANSAC and assuming that prior
information is available, we get nhyp = 5. Thus 1-point RANSAC greatly reduces
the computational cost. This means that this robust estimation method can be used
while still obtaining real-time performance.

In this chapter, some of the most important theory used in EKFmonoSLAM has been
explained. First, the concepts of the pinhole model and the homography was estab-
lished. Then, the inverse depth parametrization was explained, and it was argued
for the usage of quaternions. This led the way to explain the core of the software,
namely the EKF, in three steps: The state space model, the recursive predicting and
updating, and the measurement operator. The second part of the chapter dealt with
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Figure 3.6: 1-Point Ransac steps for the 2D line estimation. The main difference to
Figure 3.5 is that the algorithm assumes a prior distribution over the
model parameters is known in advance. Thus, it becomes possible to
estimate a line by just one point. [Civ+10]

detecting and matching features. First, it was explained how features are detected
using the FAST and the non max-suppression algorithms. Then, it was explained
how the features were matched with NCC with Active Search, and finally it was ex-
plained how the robust estimation method, 1-Point RANSAC, can be used to get
more reliable matches. These three steps all have efficiency and speed in focus which
is necessary to obtain real time performance for the SLAM solution.
The next chapter will explain the experimental work used to adapt and evaluate the
EKFmonoSLAM to the Tobii Pro Glasses 2.
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CHAPTER 4
Experimental Design

A big part of this project has been experimental work in order to collect high quality
data. This chapter is divided into two sections: First the data collection with the
Tobii Pro Glasses 2 is explained. Then it is explained how data is simulated.

It has been chosen to present all the experiments and the considerations behind these
in one section such that the reader can get an understanding of the iterative exper-
imental process and such that the reader easily can use this chapter as an overview
of available data. All raw data are provided for interested readers in appendix D.

4.1 Experiments & Considerations
This section shortly summarizes the performed experiments and the considerations
behind the experiments. The experiments are presented in chronological order such
that the reader can get an idea of the iterative process of collecting the data. Links
for the raw data can be found in appendix D.

4.1.1 Experiment 1
The first experiment consists of three recordings each with their individual path (see
Figure 4.1).

In the first video (Figure 4.1 A), the camera is only moving slightly back and forth,
and slightly up and down. Thus, the scene is the same during the entire video. This
means that most landmarks are visible during the entire video. This video should
test how well the SLAM system finds the same landmarks.

In the second video (Figure 4.1 B), I am walking around in a small closed loop. I am
trying to keep my head steady. This video should test if the 3D model constructed
via the open source SLAM system is precise enough to recognize that I am walking
in a closed loop.
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In the final video (Figure 4.1 C), I am walking more or less randomly around the
office. I am walking slightly faster and I turn my head faster. This video is more
challenging because of the increased speed, head rotation, and distance.

Figure 4.1: The figure illustrates a rough sketch of image laboratory seen from above.
The solid black squares illustrate equipment and tables in the lab. The
thin black line shows the route I recorded in the three test.

4.1.2 Experiment 2
Recording B) and C) were repeated with slower movement and better lighting. The
purpose for these recordings was to have some easier video material for testing.

4.1.3 Experiment 3
Close features are good to estimate translation, however distant features are better
for estimating rotation [JM08]. Thus, it was decided to make some recordings with
more distant features. Therefore, recordings were also preformed outside.

Several loops around buildings, in parking lots, and in open squares where performed.
More than an hour of video was recorded outdoor. These videos should test how the
EKFmonoSLAM handles distant features and longer paths. The sun was shining very
bright that day, thus on several occasions the camera was blinded. Also, big light
and dark contrasts and shadows are found in the video.

4.1.4 Experiment 4
The outdoor experiment 3 was repeated on a bright, but cloudy day. The objective
of this experiment was to test how EKFmonoSLAM performed when it was not blinded
by the sun and disturbed by shadows.
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4.1.5 Experiment 5
The IMU data from experiment 1 was lost. Therefore, a new recording of the loop
in Figure 4.1 B was performed. This recording should be used to test if information
about another sensor, the IMU, could improve the estimated path.

4.1.6 Experiment 6
Because the objective is to evaluate the accuracy of the EKFmonoSLAM, it is necessary
to know the true path. This was done for both an indoor and an outdoor recording.

In the indoor experiment the true path was approximated by an ellipse. Stickers were
put on the floor to make sure that I walked on the true path. Thus, by measuring
the distance between the stickers the elliptic shape I had walked could be calculated.

An outdoor experiment was also performed to test how well the system behaved to
greater distances. In the outdoor experiment it was chosen to use the GPS of a mobile
phone to get an true path. The phone’s GPS measurements were accessed via the
Matlab app which enabled me to get the measurements in latitude and longitude
coordinates. The units were converted to obtain the path in meters.

4.1.7 Experiment 7
An replication of the experiments done by Civera et al. [JD06] was performed. In-
stead of wearing the glasses on my head, the recordings were hand held to obtain
more steady images. Three recordings were performed.

In the first recording, a bench with a box on top was recorded. The camera was
panned from side to side in a half circle to view the bench and box from the left and
right. This movement was done ultra slow. This was to test if the same results could
be obtained as presented in [JD06].

The second recording was of an auditorium where I walked from behind the counter
and up between the stands. The purpose of this recording was likewise to check if
the results presented in [JD06] could be obtained.

Finally, an outdoor video was recorded of the bench and box where the camera was
manoeuvred in an square from side to side and back and forth. This recording was
to test how well the EKFmonoSLAM could estimate a path with minimum rotation.

This section has outlined the performed experiments. Interested readers are encour-
aged to test the videos on their own SLAM implementations. Note that links for
all the data is provided in appendix D. The next section will describe how data was
simulated.
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4.2 Simulated data
To test how well big and complex system works, it is often helpful to simulate data.
When simulating data, one becomes more aware and more in control of what went
well and what did not. It is also easier to debug, because both the true input and
output values are known, thus the code can be traversed through and the values at
all stages can be compared to the true ones in order to find the bug.

In order to simulate data it was necessary to rewrite some of EKFmonoSLAM. A function
getFeatures.m was implemented that given a time index outputs the coordinates of
the features projected into the image plane and an index for each features. Several
functions and data structures had to be altered such that the features were initialized,
matched, and stored based on their index and not their descriptor. This meant that
the image-part of the software could be excluded and the EKF could be tested alone.

It was found that it is a good approach to begin simulating the simplest useful data.
In this report, a box of points without noise were simulated (Figure 4.2 (left) ). The
simulated data points were projected into the image plane shown i Figure 4.2 (right)
using the camera matrix of the Tobii Pro Glasses 2.

Figure 4.2: The left figure illustrating the simulated data. Data points form a
box without noise. The red triangle illustrate the camera position and
orientation. The right figure illustrate the simulated data projected into
the camera of the Tobii Pro Glasses 2.

By simulating the data without noise, the model should be accurate to machine pre-
cision. The constant velocity model was initialized with the same speed as the data
was simulated after. Thus, the prediction should be spot on from step one. This
insight is valuable for debugging.
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This chapter has described my experimental work and the considerations behind. The
next chapter will explain how EKFmonoSLAM can be adapted to the data described in
this chapter.
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CHAPTER 5
Implementation

The goal of this chapter is to explain how EKFmonoSLAM is adapted to the image data
collected with the Tobii Pro Glasses 2. The first Section 5.1 outlines the EKFmonoSLAM
implementation. This section will give readers a better understanding of the iterative
steps of the algorithm. In Section 5.2, the camera calibration of the Tobii Pro Glasses
2 is described. Following in Section 5.3 a constant for downsizing the recorded images
is found to reduce the computational cost. Then, in Section 5.4 thresholds for the
feature detector algorithms, FAST and the non maximum suppression, that provide a
sufficient number of features from the images recorded by the Tobii Pro Glasses 2 are
established. As a form of validation of the adaptation, Civera et al.’s [JD06] results
are replicated in Section 5.5 using hand held recordings from the Tobii Pro Glasses
2.

5.1 Software
A big part of this project has been to understand and analyse EKFmonoSLAM. EKFmonoSLAM
is a huge program consisting of 131 files. Therefore, it is chosen to dedicated a section
to give an overview of the software. It is believed that this overview will make it eas-
ier for the reader to understand which parts of the implementation that are altered
in order to adapt the software to the data from the glasses. In appendix E a more
detailed and language specific manual of the software is provided. It is recommended
that readers interested in working with the software visit this manual.

Figure 5.1 shows a flowchart of the algorithm. To begin with, illustrated as the pur-
ple box, the EKF is initialized. This includes initialization of the state vector x, the
uncertainty matrix P, and the error operator Γ. It also covers initialization of the
internal camera parameters.

Secondly, in the first green box, features are found in the first frame using FAST-9
with non-max suppression and stored in inverse depth coordinates in the state vector.

Thirdly, the algorithm enters its recursive stage. In the grey box, the found features
are managed. This includes testing if the features can be converted to an Euclidean
representation based on an linearity index in order to reduce the computational cost,
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Figure 5.1: The figure shows a flowchart of the EKFmonoSLAM algorithm. The pur-
ple box indicated initialization and preallocation of variables. The red
boxes indicated fetching of images. The green boxes indicated image
operations. The grey box indicate storage and deletion of features. The
orange box shows the prediction step, and the blue boxes shows the
update step of the EKF.



5.1 Software 45

and deletion of features that are not measured half as many times as they are pre-
dicted.

In the orange box, a prediction of the next state for both the features and the camera
is made using the transition equations described in the Section 3.4.

Following the prediction, a new image is fetched (red box) and three image opera-
tions are applied (the green boxes) to this image. First, features are found in this
new image. Then, the uncertainties about the landmarks which are already in the
state vector are used to perform Active Search. Features from the previous frame
and the new frame are matched with NCC. Finally, the 1-point RANSAC is applied
to exclude outliers. Thus, these three steps find the matches that represents the cor-
respondence between the the new image and the previous.

Subsequently, the EKF is updated based on this correspondence between the frames.
This process is also divided into three steps (the blue boxes). First, the filter is up-
dated based on the low innovation inliers (the features with small distance to the
most supported hypothesis). These low innovation inliers are often distant points as
they are often viewed more stationary. This updating greatly reduced the uncertainty
about the model. The reduction in uncertainty is used to rescue high innovation in-
liers. These high innovation inliers are often closer points where the translation has
greater influence on their position. Finally, the filter is updated based on these high
innovation inliers. It is possible to divide the updating into two steps because of the
linearity of the filter. According to Civera et al. [Civ+10], splitting the updating into
two steps does not have noticeable effect on the computational cost as long as the
state vector is significantly larger than the measurement vector which is usually the
case in SLAM.

This recursive structure continues till the last frame is reached. In appendix E, a
manual on getting started and a more detailed Matlab specific outline of the algo-
rithm is presented.

This section has presented an overview of the recursive structure of the EKFmonoSLAM.
Hopefully, this overview will help the reader understand which parts of the implemen-
tations are altered in order to adapt the software to data from the Tobii Pro Glasses
2. The next section will describe how the initialization, depicted as the purple box
5.1, is altered to the front camera of the glasses.
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5.2 Camera calibration
The goal of camera calibration is to determine the internal camera parameters A
described in Section 3.1. These parameters have a huge influence on how the world is
perceived in the images and therefore it is very important to find a good estimation of
these parameters. This section will describe how the Matlab calibration application
is used to find the internal camera parameters of the front camera on the glasses.

The EKFmonoSLAM implementation uses the following parameters (Table 5.1).

Parameter Value
nrow Number of pixel in row
ncol Number of pixel in column
u0 The principal offset x direction
v0 The principal offset y direction
κ1 1. distortion constant
κ2 2. distortion constant
f The focal length
d The ratio between the cameras’ digital

sensor and the image size.

Table 5.1: The figure shows the necessary internal camera parameters used by the
EKFmonoSLAM implementation.

Matlab has a camera calibration application which was used for the camera calibra-
tion. This application was given 13 full HD images (1920x1080) of a checkerboard
taken from different angles and distances. The area of each square was known to
be 15 mm2 and all the corners of these squares was known to lie in the same plane,
thus the world coordinate could be reduced to a plane where the relative positions
between the points were known. The Matlab calibration application automatically
found all the corners qj of the squares in the checkerboard in each of the 13 images.
Thus, both qi and qj were known. It was wished to determine the operator H which
is possible based of the homographical relationship described in Equation 3.2.

The Matlab calibration application minimized the distance between the points mapped
to world coordinates via the homography and the points on a checkerboard (Equation
3.3). The application found the internal parameters presented in Table 5.2.

From Table 5.2 it is seen that not all the necessary parameters are explicitly given in
Table 5.1. However, using Equation 5.1, is is possible to find d.

d = 1
2(dx + dy) = 1

2 ( W
ncol

+
H

nrow
) (5.1)
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Parameter Value
nrow 1080 pixels
ncol 1920 pixels
u0 968.9 pixels
v0 499.8 pixels
κ1 0.0286 mm
κ2 -0.0669 mm
fx 1139.1 pixels
fy 1143.8 pixels

Table 5.2: The estimated internal parameters found by the Matlab calibration appli-
cation. Note that not all the necessary parameters are provided compared
to Table 5.1.

where W and H are respectively the width and height of the camera’s digital sensor
in millimeters1.

And the focal length can be converted into millimeters by multiplying with d.

f = fd = 1
2(fx + fy)d (5.2)

Thus, Table 5.3 shows the estimated internal parameters for the front camera of the
Tobii Pro Glasses 2.

Parameter Value
nrow 1080 pixels
ncol 1920 pixels
u0 968.9 pixels
v0 499.8 pixels
κ1 0.0286 mm
κ2 -0.0699 mm
f 1.6232 mm
d 0.0014 mm/pixels

Table 5.3: The figure shows the estimations for the necessary internal camera pa-
rameters used by EKFmonoSLAM.

In order to make sure that these internal camera parameters were correctly estimated,
the camera model was validated by selecting one corner on two random squares on
an image of a checkerboard.

1Values of W = 2.7328 mm and H = 1.5344 mm are from a e-mail correspondence with Tobii’s
Technical Support Engineer Lea Kümper 29/9/2017
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Figure 5.2: Two corners selected on the
checkerboard

These two 2D points were projected
onto the 3D checkerboard plane through
the homography with the found inter-
nal camera parameters. This resulted
in a distance between the selected two
points of [75.03; 29.67]T . As men-
tioned, each side of the squares was 15
mm, thus the true distance between the
points is [75; 30]. The small error is
most likely due to manual selection of
points or small errors in the camera ma-
trix.

Finally, the selected points were pro-
jected back onto the 2D image plane
through the inverse homography. The
coordinates of the back projected points
were compared to the originally selected points. It was found that the distance be-
tween the original points and the back projected points were respectively [0.11 ⋅
10−12; 0]T and [0.11 ⋅ 10−12; 0.05 ⋅ 10−12]T .

This procedure was repeated for points further from each other and similar results
were found. Thus, the estimation of the camera matrix is correct.

In this section, the Matlab calibration application was used to find the internal camera
parameters of the front camera of the Tobii Pro Glasses 2 (Table 5.3). It is important
to note that these parameters were found from full HD images (1080x1920). However,
because of the linearity of the homography, the parameters can be scaled by the
same factor as the images. These parameters will be used to initialize the camera
in EKFmonoSLAM. The next section will investigate how the full HD images can be
downsized to decrease the computational cost.
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5.3 Scale Comparison
The images recorded by the Tobii Pro Glasses 2 are full HD (1920 x 1080), and be-
cause of the big size of the images operations become very computational expensive.
They become less expensive if the images are downsized. However, downsizing de-
creases the information content of the image. This section will investigate how much
the images should be downsized.

Civera et al. use images of size 320x240 in [JM08]. It is assessed that it will provide
better results to downscale with a constant that gives approximately the same image
size as used in EKFmonoSLAM as many hard coded values throughout the code (e.g.
in feature detection and feature matching) are chosen accordingly to the size of the
images. Furthermore, it is preferred to scale both dimensions by a common constant
without cropping the image, because then the corresponding scaled internal camera
parameters can easily be obtained by multiplying with this common constant. Thus,
it has been chosen to test scaling by 1/5 (image size: 384x216) and scaling by 1/6
(image size: 320x180).

Table 5.4 shows that the elapsed time is 9 % shorter when downsizing the images by
1/6 than the elapsed time when downsizing by 1/5.

Scale Time
1/5 479.70
1/6 439.45

Table 5.4: The table shows the elapsed time for the two experiments in seconds.
It is seen that the experiment with scale 1/6 runs 9 % faster than the
experiment with scale 1/5.

The increased speed advocates downsizing the images by 1/6. However, also the im-
age information (map size) has been investigated. Figure 5.3 shows the map size and
the number of matched features for each frame for the experiments with different
image sizes.

Figure 5.3 shows that both more features and matches are found in the experiment
with scaling 1/5 (red) than in the experiment with scaling 1/6 (blue). The images be-
come increasingly blurred when they are downsized. This increased blurriness makes
it harder to detect features and increase the measurement error of the detected fea-
tures. This advocates that higher resolution images results in more accurate and
stable SLAM solutions.

This section has investigated how the scaling of the images effects the SLAM problem.
Two scaling factors were investigated: 1/6 and 1/5, because these scaling factors
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Figure 5.3: The upper subfigure shows the map size (number of landmarks) for the
experiment with scale 1/5 (red) and 1/6 (blue). The lower graphs shows
the number of matched features in the experiment with scale 1/6 (red)
and the experiment with scale 1/5 (blue).

made the image size correspond approximately to the image size used by Civera et
al.[JM08]. On the one hand, it was found that the run time of the experiment with
scaling 1/6 was 9 % faster. On the other hand, it was found that more features and
matches were found in the experiment with scale 1/5. It is assessed that the increased
information, and thus accuracy, is more important to the objective of this thesis than
an improvement in the run time. Therefore, it is chosen to use a scaling factor of 1/5
(image size: 384x216). This scaling constant will be used in the rest of the thesis for
analysis. The next section will investigate how the thresholds in the feature detector
have to be lowered in order to find a sufficient number of features.



5.4 Thresholds for the Feature Extraction 51

5.4 Thresholds for the Feature Extraction
In computer vision, points are often used to find correspondences between images.
To do so, it is important to find points with intrinsic meaning such that the ’same’
point can be found in two images. This section will describe the trade-off between
including too many or too few features and determine a reasonable thresholds for the
feature detector FAST-9 with non maximum suppression used in EKFmonoSLAM.

It is a trade-off how many features should be included when finding the image corre-
spondence. Selecting a high threshold will include few features of high quality (more
intrinsic features), and thus it will be easier to find the ’same’ feature in two images.
However, each match will bear a high weight, thus an incorrect match can be rather
significant for the model estimate. In addition, when just a few number of features
are detected the probability of not finding any correspondences between two frames
increases.
On the other hand, selecting a low threshold will include many, but less intrinsic
features, which results in more incorrect matches. However, the model will trust each
match less, and thus the influence of each incorrect match is reduced. Also, including
more features is more computational expensive.
As this trade-off has been established, the rest of this section will seek to find thresh-
olds that neither include too many or too few features.
As mentioned in the Section 3.7, the EKFmonoSLAM implementation uses the FAST-9
algorithm followed by a non maximum suppression to detect features. Both meth-
ods use a threshold to determine how many features should be included. First, the
threshold for the FAST-9 will be investigated. Then, the barrier for the non maxi-
mum suppression.

Figure 5.4 shows the number of features detected by the FAST-9 for different thresh-
olds.
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Figure 5.4: The figure shows which features are detected by the FAST-9 when ad-
justing the threshold for both a blurred image (right column) and a
non-blurred image (left column). The default threshold is 100. From
the figures, it is seen that the number of detected features increase as
the threshold decreases. It is chosen to use a threshold of 20.
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Figure 5.4 shows that lowering the threshold results in more detected features. Based
on the figure, it is assessed that the default threshold of 100 is too high because only
one feature is detected in the blurred image. By looking at the right column of images,
one would expect that the corners of the TV were intrinsic features. This is the case
with a threshold less or equal to 20. However, it is assessed that too many features
are detected with a threshold of 10. Thus, it is found that a threshold of 20 gives a
sufficiently amount of features and that these features still are sufficiently intrinsic.

It was also investigated what the barrier of the non maximum suppression should be.
By using a threshold at 20 for the FAST-9, and trying different barrier values for
the non maximum suppression the barrier was tested. Figure 5.5 shows a zoom of a
cluster of points detected in the upper left corner of the TV in the blurred image.
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Figure 5.5: The figure shows a zoom of the left corner of the TV in the blurred image
from Figure 5.4. Different barriers of the non maximum suppression
have been used. In EKFmonoSLAM, the default barrier by Civera et al. is
100, however it has been assessed that in this case, it is better to use a
barrier of 20.
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Figure 5.5 shows that by decreasing the barrier of the non maximum suppression,
only the most intrinsic point in a 3x3 region is selected. From the figure, it is seen
that the barrier has to be decreased to 20 in order for only one point in each cluster
to be selected. Thus, based on Figure 5.5 it is chosen to use a barrier of 20.

Figure 5.6 summarizes how the threshold of the FAST-9 algorithm and the barrier of
the non-maximum suppression effects the number of features. The figure shows that
there is a huge difference in features detected by the FAST-9 whether the image is
blurred or not blurred. The figure supports the lowering of both thresholds.

Figure 5.6: The figure shows the number of features detected in a blurred image
(right) and a not blurred image (left). The blue points are the features
detected by FAST-9, and the red points are the features after performing
the non maximum suppression. The black lines indicate the suggested
number of features by [Ros+08]. Note that the scale on the y-axis is
different in the two plots.

This section has investigated the lowering of the thresholds for the FAST-9 and the
barrier for the non maximum suppression. It has been assessed that the default values
should be lowered in order to obtain a sufficient amount of features - especially in
blurred images. Thus, a threshold of 20 has been applied for the feature detector and
a barrier of 20 is used for the non maximum suppression. These thresholds will be
used in the rest of this thesis unless otherwise stated.

Subsequently, the internal camera parameters have been found and used to initialize
the EKFmonoSLAM. It has been found that the best results compared to the computa-
tional cost are obtained by scaling the images by a factor of 1/5. And it has been
found that the threshold and barrier of the FAST-9 and non max suppression should
be 20. By establishing these parameters, it is possible to replicate Civera et al.’s
experiments using data recorded by the Tobii Pro Glasses 2.



5.5 Validation of implementation 55

5.5 Validation of implementation
This section will, as a form of validation for the implementation, demonstrate how
Civera et al.’s two experiments described in [JD06] can be replicated using EKFmonoSLAM
with the previously described internal camera parameters, thresholds, and downsized
images collected with the Tobii Pro Glasses 2. Civera et al.’s experiments are in
this thesis referred to as the outdoor experiment and the indoor experiment and can
be found at the following links: http://webdiis.unizar.es/%7Ejosemari/in.avi and
http://webdiis.unizar.es/%7Ejosemari/out.avi.

In the outdoor experiment Civera et al. have placed several boxes on top of a bench.
A small black square has been marked as the front of the box. The figure below
compares the setting of the Civera et al.’s outdoor experiment by a replication of the
experiment.

Figure 5.7: The figure shows a comparison between the landscape used by Civera
(left) and the one used to replicate his results (right).

In Civera et al.’s outdoor experiment, a hand held camera is maneuvered such that it
starts out facing the box from the front (as shown on Figure 5.7). Then, the camera
is moved a quarter of a circle such that the box is seen from the right side, and then
half and circle back such that the box is seen from the left side, and finally the camera
is moved to the original position. Note that the movement is very slow.

Like the settings has been tried replicated, the slow movement has also been tried
replicated. To obtain a more stable recording the Tobii Pro Glasses 2 are hand held
(watch video: http://elers.dk/Videos/halfcircle.avi). Using the previous described
alterations of the software, similar results as Civera et al.’s were obtained.

From Figure 5.8, it is seen that the final path of both Civera et al.’s experiment and
the replicated experiment shows the correct movement. It is seen that both features
close to the camera and more distant features are located with very low uncertainty

http://webdiis.unizar.es/%7Ejosemari/in.avi
http://webdiis.unizar.es/%7Ejosemari/out.avi
http://elers.dk/Videos/halfcircle.avi
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Figure 5.8: The figure shows a comparison between the final path in Civera et al.’s
outdoor experiment (left) and the final path of the replicated experi-
ments (right).

(the ellipse around the features are very small). Thus, very similar results are ob-
tained.

In the indoor experiment Civera et al. have filmed an auditorium. Again, the setting
has been tried replicated (Figure 5.9).

Figure 5.9: The figure shows a comparison between the landscape used by Civera
(left) and the one used to replicated his results (right).

In this experiment, a hand held camera set out from behind the counter, it is moved
up through the stands, and then back across the scene. This movement has been
tried replicated. The glasses are also hand held in this experiment (watch video:
http://elers.dk/Videos/auditorium.avi ). The final paths are showed in Figure 5.10.

http://elers.dk/Videos/auditorium.avi
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Figure 5.10: The figure shows a comparison between the landscape used by Civera
(left) and the one used to replicated his results (right).

Again the path of the replicated experiment does very well estimating the actual path.
Also, there is very little uncertainty about most of the features like in Civera et al.’s
experiment. It is important to note that the data and the actual path for the two
experiments are not identical, thus it is not expected that the final paths are either.

The results Civera et al. present in [JD06] were replicated with data recorded with
the Tobii Pro Glasses 2. Note that the glasses was hand held in these experiment to
get more steady recordings and imitate Civera et al. most accurately. Using the pa-
rameters found in the Sections 5.2, 5.3, and 5.4 very similar results to those presented
in [JD06] were obtained. Thus, the adaptation of the EKFmonoSLAM implementation
to the image data collected by the Tobii Pro Glasses 2 has been successfully validated.

Of course it is not of much interest how the EKFmonoSLAM performs when the glasses
are hand held. Therefore, the obvious next step is to test how well the EKFmonoSLAM
performs when the Tobii Pro Glasses 2 are worn as glasses. The next chapter will
present and discuss the obtained results when the glasses were head-worn.
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CHAPTER 6
Results & Discussion

In this chapter the results of the thesis will be presented and discussed. The structure
of the chapter will represent the iterative process of hypothesizing, testing, and evalu-
ating. In Section 6.1, it is presented how the EKFmonoSLAM performs on data recorded
by a person wearing the glasses in an indoor experiment. In this section, it is found
that the software is both very dependent on the initial inverse depth distribution and
it is sensitive to fast rotations. It is investigated in Sections 6.2 and 6.3 how a good
prior inverse Gaussian distribution to initialize features can be found. It is hypothe-
sized that the sensitivity to fast rotations is due to the non-invariant feature matching
algorithm. Thus, in Sections 6.4 and 6.5 it is investigated how sensitive NCC with
Active Search is towards rotations. It is hypothesized that an outdoor experiment,
where there are more distant features, will decrease EKFmonoSLAM’s sensitivity towards
rotation. This is investigated in Section 6.6.

6.1 Wearing the Tobii Pro Glasses 2
This section will present the results obtained from experiments 1 (described in Section
4.1) using the previously described adaptation of the software. As stated previously,
the data collected wearing the Tobii Pro Glasses 2 varies in difficulty in the three
recordings in experiment 1. In the first recording, the camera has little movement
and slow rotations, in the second recording, the camera is manoeuvred in a loop
around a table, and in the last recording, a longer distance is covered with faster
movement and rotations.

6.1.1 Recording with little movement
Figure 6.1 shows the first two images in the recording with little movement. It is seen
from the top left image that some features are already initialized in the first iteration.
This undelayed initialization is possible because of the inverse depth parametrization
with the prior knowledge that the observed features are in front of the camera [JM08].

It can be seen from the size of the red circles in the top right and bottom image in
Figure 6.1 that the uncertainty decreases from the first to the second iteration as
more points are initialized and recognized. The right column in Figure 6.1 shows
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Thick red: low innovation inliers. Thin red: high innovation inliers. 

 Magenta: rejected by 1-point RANSAC. Blue: No match found by cross-correlation
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Figure 6.1: The upper row shows the first step in the experiment. The lower row
shows the second step. The red circles are high innovation inliers and
the blue circles show features where a match is not found. The size of
the circles illustrate the uncertainty estimate. The initialized points are
to begin with set to infinity (red arrows in right plot)

that the distance to most features are estimated to infinity to begin with. The reason
is that the features are observed with low parallax, thus the uncertainty about their
position is high, and therefore it is chosen to estimate them at infinity.

The implementation solves the proposed SLAM problem. It estimates the 3D posi-
tion and movement through the experiment. Figure 6.2 shows the last iteration which
coincides with the expected path (Figure 4.1). A video of the solution can be found
at http://elers.dk/Videos/atDesk.avi.

Figure 6.2 shows the last frame of the first recording. It can be seen from the left
image that the scene (and thus the position) is roughly the same as the first image
in Figure 6.1. The map verifies that the starting and ending positions are very close
(right plot in Figure 6.2). Furthermore, it is seen from the estimated map that the
position uncertainty of the features have decreased and only the position of few fea-
tures are estimated to infinity.

Thus, satisfactory results were obtained using the EKFmonoSLAM on the data recorded
with little movement.

http://elers.dk/Videos/atDesk.avi
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Thick red: low innovation inliers. Thin red: high innovation inliers. 
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Figure 6.2: The figure shows the last iteration of the first experiment. The right
plot shows the estimated map and path. The features with a magenta
circle are features that have been rejected by 1-Point RANSAC.

6.1.2 Recording with loop around table
The aim of the second recording was to estimate how well the EKFmonoSLAM could
estimate the closing of a loop. This experiment had more movement and more rotation
than the first experiment. Figure 6.3 shows the final path.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 6.3: The final path of the experiment where the camera was manoeuvred
around a table in a loop.

Figure 6.3 shows the final path of the recording where the camera was manoeuvred
in a loop as illustrated in Figure 4.1. From the estimated path the structure of the
loop is recognized. Features are detected at all sides. However, the estimated path
is drifted such that the starting point and end point do not meet as expected. Also,
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the scale seems to be wrong. The radius of the circle is estimated to approximately
0.5 meters whereas it should be approximately 1.5 meters. A video of the solution
can be found at http://elers.dk/Videos/loop.avi.

An even more challenging recording was tested. This recording consisted of a longer
path with faster rotations and movements (Figure 4.1 (C) ).

6.1.3 Recording with random walk in the laboratory
Figure 6.4 shows the estimated final path from the recording that covered the longest
distance and had the fastest rotations. Comparing the estimated path in Figure 6.4
with the expected path in Figure 4.1 C, it is seen that the number and direction of
the turns coincides. However, it is expected that the estimated path starts and ends
approximately the same place which is not the case in Figure 6.4. From this figure,
it is seen that a rather big drift occurred. Again, the scaling is off as the size of the
laboratory is significantly larger than 2 m2. A video of the solution can be found at
http://elers.dk/Videos/aroundImageLab.avi.

Figure 6.4: The final path of the experiment where the camera was manoeuvred
randomly around the laboratory.

In this section the EKFmonoSLAM implementation was tested on three videos that had
been recorded wearing the glasses. The software performed well in the first recording
with little movement. However, it was observed in the two last recordings that the
software could not estimate the correct scale of the map and that the estimated path
had a tendency to be drifted when there were fast rotations.

http://elers.dk/Videos/loop.avi
http://elers.dk/Videos/aroundImageLab.avi
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The next two sections will investigate how a more accurate scaling can be selected.
First by simulating data and then by using recorded data. Following this investigation,
the robustness of the algorithm will be tested in order to explain why the drifts in
the estimated path happens during the fast rotations.
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6.2 The importance of a good prior
This section will use simulated data to investigate how the inverse depth initialization
of features effects the scaling of the estimated path. The simulation setup described
in Figure 4.2 will be used to examine these effects. The main advantage of using this
simulated data compared to some recorded data is that the true position and the true
model is known.

When observing point features through a camera, the distance to these features can
only be determined up to scale - meaning that the distance between the camera and
the features could be anything between zero and infinity. In order to initialize fea-
tures after just one image Civera et al. make an educated guess about a distribution
describing the distances to the observed features. Because of the inverse parameter-
ization in EKFmonoSLAM, this initial guess is an inverse Gaussian distribution. By
default in EKFmonoSLAM, Civera et al. have chosen the mean and standard deviation
of this distribution to one meter. Civera et al. state that this initial distribution
must be ”derived heuristically ... to cover the 95% confidence intervals” [JM08] of
the features. If this is not the case, like it was to begin with in the simulated data,
where the initial distances between the simulated points and the camera were greater
than three meters, the scaling will be off. In this example it meant that the EKF
thought that the points were approximately three timers closer than they actually
were. And because the translation of closer point requires less velocity, the model
thought that the velocity of the camera was approximately a third of the true velocity.

The plot to the right in Figure 6.5 shows the relative errors after 30 iterations as a
function of the initial distance.

From Figure 6.5, it is seen that the relative error in position decreases as the initial-
ization distance comes closer to the true initial distance to the features (three meters).
This figure shows the importance of good prior knowledge to get the correct scaling.
The right plot shows the inverse Gaussian distribution with the minimizer at d0 = 2.9
and fixed σ = 1. It is seen that the 95 % confidence intervals are very wide. Also, it is
seen that the median of the distribution is 1.2. The median is defined as the middle
value, thus it is expected that approximately equally many observations have greater
and shorter distance to the camera. This is not the case, as all features are located
between 3 and 4.12 meters, and thus the median distance being 3.46. Based on the
wide confidence intervals and the too small median, it does not seem ideal to fix the
standard deviation.

Instead of fixing the standard deviation, Civera et al. suggest that the standard
deviation is dependent on the initial distance[JD06]. They suggest the following rela-
tionship.
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Figure 6.5: The left plot shows relative error after 30 iteration with different ini-

tialization depths and standard deviation fixed at 1. The right plot
shows the density function for the inverse Gaussian distribution using
the minimizer 2.9 as mean. The red lines indicate the 95 % confidence
intervals and the blue line indicate the median.

ρ̂0 = ρ0
2 σρ = ρ0

4 ρ0 = 1
d0

(6.1)

Even though this relationship is not applied in EKFmonoSLAM, it is tested how this
dependency effects the inverse Gaussian distribution and the error function.

From Figure 6.6 a similar error curve is seen as in Figure 6.5. The minimizer is
found to d0 = 3.4. Using the relations described in Equation 6.1, this gives ρ0 = 0.29,
ρ̂0 = 0.145, and σρ = 0.073. These parameters are used to obtain the inverse Gaussian
density distribution showed in the right plot in Figure 6.6. From this plot, it is seen
that the confidence intervals are more narrow. And all features are still included in
the 95 % confidence interval. Furthermore, it is seen that the median is 3. This
is not the middle distance of the features, however it is significantly closer than in
Figure 6.5. Therefore, based on the more narrow confidence intervals and the more
appropriate median, it is chosen to incorporated the relations described in Equation
6.1 in EKFmonoSLAM.

This section has described how homogeneous 3D world coordinates are only described
up to scale. The importance of this scale as a form of prior information was inves-
tigated through simulated data. It was found that when initializing a feature in
inverse depth coordinates, the initial heuristic derived distribution describing the dis-
tance from the camera to the features should cover the 95 % confidence region in
order to provide good position and velocity estimations. Furthermore, it was chosen
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Figure 6.6: The left plot shows the relative error after 30 iterations. The initial stan-
dard deviation is dependent on the initial distance by the relationship
described in 6.1. The right plot shows the density function of the in-
verse Gaussian distribution using the minimizer. The red lines indicate
the 95 % confidence intervals and the blue line indicate the median.

to incorporate the relation described in Equation 6.1 in EKFmonoSLAM.

The next section will investigate how the initial depth distribution effects real data
and how a good initial guess can be heuristically derived from image data.
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6.3 Finding a good prior depth
The purpose of this section is to investigate the influence of the initial depth distri-
bution on real data and to describe how a good prior can be found. These tests are
performed on the indoor recordings from Experiment 6 described in Section 4.1. In
this experiment the camera was manoeuvred in an ellipse where the size of the ellipse
was known. The initial image in this recording is shown as the left image in Figure
6.7.
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Figure 6.7: The left image shows the initial frame from the indoor recording from
Experiment 6. The right plot shows the hypothesis of an initial inverse
Gaussian depth distribution with ρ̂0 = 0.125 and σp = 0.0625.

Because of humans’ prior knowledge about the size of the furniture in the image,
we rather intuitively get an understanding of the depth in the image. Thus, from
the image it is expected that the closest objects are about 1 meter from the camera
and the most distant features are approximately 10 meters away from the camera.
Also, it is expected that most of the objects such as the chairs, the desk, and the TV
are approximately 4 meters from the camera. Using the correspondence between the
mean and the shape of the inverse Gaussian distribution described in Equation 6.1
an initial hypothesis could be ρ̂0 = 0.125 and σp = 0.0625 which provide the inverse
Gaussian distribution seen in the right plot in Figure 6.7. Note that both the con-
fidence intervals and median coincides with the expectations about the depth. This
hypothesis will be investigated in this section.

Figure 6.8 shows three subfigures which each illustrate the estimated path of 10 tests
using an initial depth of respectively 1, 4, and 10 meters. The known true path is
illustrated by the black dotted line.

From Figure 6.8 it is seen that the initial depth distribution has a huge influence on
the estimate. In the top left subfigure a too small ellipse is estimated compared to
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Figure 6.8: Each subfigure have 10 estimated path with the same initial depth dis-
tribution. The initial mean depth in the top left subfigure is d0 = 1, in
the top right subfigure it is d0 = 4, and in the lower central subfigure
it is d0 = 10. From the figure it becomes very clear that the initial
depth distribution has huge influence on the scaling. The true path is
illustrated by the black dotted line and has the same size in all three
subfigures

the true path (the black dotted ellipse) and in the lower central plot a too big elliptic
path is estimated. This is caused by a choosing respectively a too short and too long
initial distance. The path in the last figure, with an initial distance of d0 = 4, seems
to fit the true path well.

It is also seen from Figure 6.8 that different estimated paths are obtained each time
EKFmonoSLAM is run even though both the data and the parameters do not change.
The reason for this randomness lies in 1-Point RANSAC that randomly chooses a
model with high support from data. Note that 1-Point RANSAC does not choose the
best model, but merely a good model. This results in the random structures seen in
the figure. It is also seen that the distances between the estimated paths propagate
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as time progresses. This is a common issue for many types of SLAM because the
errors accumulate over time.

Furthermore, the absolute error in meters and the relative cumulative error is calcu-
lated for the d0 = 1, . . . , 10. An average of six runs have been taken to reduce the
influence of the randomness. The average estimated paths can be found in Appendix
B.1 together with an explanation on how the error functions are calculated. Figure
6.9 shows these error functions.
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Figure 6.9: The right subfigure shows the absolute error in meters when choosing
different initial depths. The left subfigure shows the relative cumulative
error when choosing different initial depths. In both subfigures, each
line is an average of six runs to reduce the influence of randomness.

From Figure 6.9 the same trend is seen as described in Figure 6.8: Using a too small
prior depth results in a high error and choosing a too big prior depth also results
in a high error. From Figure 6.9, it is seen that choosing d0 = 4 provides the best
estimate. Choosing d0 = 4 provides a relative cumulative error of 125.4835%. From
these observations it is seen that the EKFmonoSLAM is dependent on the initial depth
distribution to provide the correct scaling. Also, it was found that a rather good
initial guess of the scaling can be obtained by human intuition from looking at the
images and by investigation of the inverse Gaussian distribution. However, even with
a good initial guess very high cumulative errors are obtained.

As described in Section 6.1, two issues arose after testing EKFmonoSLAM on data col-
lected wearing the glasses: The scaling was off and a lot of drift occurred in recordings
with fast rotations. In this and the previous section the importance of the prior knowl-
edge for proper scaling of the estimated path and environment have been established.
It has been investigated how a good initial depth can be chosen to reduce the error.
The second issue, the drifting that occurred with fast rotation, will be investigated
in the following sections. When the filter is estimated on basis of just a few feature
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correspondences, the estimated model will be more sensitive to outliers and noisy
observations. During fast turns the images are often more blurred and therefore the
features are associated with higher error. Previously, in Section 5.4, it was found
that significantly less features were found in images with rotation. Furthermore, it is
hypothesized that even less features are matched during fast turns. This hypothesis
will be tested by investigating the matching algorithm NCC with Active Search in
the following two sections.
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6.4 Investigation of thresholds for Active Search
In this section the search region in Active Search is investigated. The purpose is to
determine if Active Search with a threshold of 100 limits the number of correctly
matches features.

As described in Section 3.8, the advantage with Active Search is that only feature
matches within a limited search region are considered. Figure 6.10 illustrates which
features are excluded because of a too high uncertainty (red), which features are
included but without finding a match with NCC (yellow), and which features that
are included and where a match has been found (green).

Figure 6.10: The figure shows the unacceptable search region (red), the acceptable
search region where no match has been found by NCC (yellow), and
the acceptable search region where a match has been found (green).
The default threshold of 100 has been chosen. Note that very little
rotation is happening in this frame.

The figure shows that features with high uncertainty (big ellipses) are not tried being
matched. There is only little rotation between this image and the previous, thus most
of the feature uncertainty is rather small. It is seen that NCC finds a match in nearly
all the included search regions. And it seems as a sufficient number of features are
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matched. Thus, the search region seems reasonable in this setting. However, when
looking at a sequence of blurred images during a turn (Figure 6.11) the uncertainty
increases and much less features are matched.

Figure 6.11: The figure shows four sequential images in a turn. Features within the
unacceptable search regions are colored red, features within acceptable
search regions where no match has been found by NCC are colored
yellow, and the features within acceptable search region where a match
has been found are colored green. The default threshold of 100 has
been chosen.

From Figure 6.11 it is seen that in many of the acceptable regions NCC is not able
to find any matches. A reason for this is that NCC is not rotation invariant, thus
the rotation between the images reduce the odds of getting a true match by NCC.
From this figure, it is also seen that the uncertainty grows for features that are not
matched over a series of images. E.g. the features in the top right corner of the TV
are not being matched in any of the images and thus the uncertainty of their position
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grows. In the lower left image in Figure 6.11, the uncertainty of these features have
become too big, thus they are exclude by the Active Search algorithm. From these
points it is also seen that the uncertainty is greater in the horizontal direction which
corresponds to the turning direction.

From Figure 6.11 it is seen that there are many acceptable search regions where a
match has not been found. Based on these observations, it is assessed that NCC
is the limiting factor to achieve more correct matches during turns. Therefore, the
threshold that determine the size of an acceptable search region is kept as the value
suggested by Civera et al. in the EKFmonoSLAM implementation[JM08].

This section has tested the influence of the size of the search region of Active Search
on data from the Tobii Pro Glasses 2. It is found that the NCC is the limiting
factor to achieve more correct matches especially between images with high rotation.
Therefore, it is chosen to keep a search region of 100. In the following section the
robustness of NCC will be examined.
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6.5 Robustness of matching
When there is fast rotation between images it is important to have rotation invariant
features to obtain good matches. When walking around wearing the glasses, the cam-
era movement and rotation will be rapid, because the person wearing the glasses tend
to make quick head movements. It is known that NCC is neither scale nor rotation
invariant [Aan15]. However, in this section, it is tested how much rotation this NCC
implementation can handle.

NCC is not rotation invariant because it is calculated based on a patch from the
feature (Section 3.8). If the image is rotated, the pixels in this patch will not be the
same nor will they be in the same order, and thus lower correlation will be found
between the two patches.
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Figure 6.12: The figures shows the number of features that are matched when rotat-
ing an image with respectively 0,1,2, and 3 degrees. From the figure,
it is is found that the NCC is very sensitive to rotation.

In this scenario, it is chosen to use a threshold of 100 for the feature detectors to
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provide an easier and better illustration. The detected features are matched with
features in a rotated version of the same image. This matching is repeated with in-
creased rotation in Figure 6.12.

From Figure 6.12 it was found that the NCC is very sensitive to rotation. A rotation
with just 3 degrees removed nearly every match. Additionally, it was found that with
these settings and this data, a rotation of 15 degrees removed all matches.

In this section it was confirmed that NCC is very sensitive to rotation and only a few
degrees of rotation can mess up the matching. This is an issue when using NCC for
feature matching between images with high rotation which is typically the case for a
head mounted camera.

The second issue that arose in Section 6.1 when the glasses were head-worn was that
a drift occurred in the estimate path in recordings with a lot of rotation. The assump-
tion was that bad or few feature correspondences between frames with high rotation
caused this error. Already in Section 5.4 it was found that significantly fewer features
were discovered by FAST-9 during turns. Furthermore, it has been found in this sec-
tion that NCC dramatically limits the number of matches when exposed to just a
few degrees of rotation. The combination of the poor performance of FAST-9 and
NCC when exposed to rotation results in very few feature matches during turns. The
model estimate becomes sensitive to outliers when it is based on a very little sample.
Thus, these few matches are likely to cause the drift of the estimated path observed
in Section 6.1.

Previously it was mentioned that close features are good at estimating translation
and distant features are good at estimating rotation. Thus, it is hypothesized that
EKFmonoSLAM will be less sensitive to rotation if more distant features are included
and that the relative drift would be smaller in a bigger scale. Thus, it was decided to
test how well the EKFmonoSLAM behaved in an outdoor experiment with bigger scale
and thus more distant features.
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6.6 Increased distances
This section presents the results form the outdoor experiment 6 (Section 4.1). The
purpose of this experiment was to test how well the EKFmonoSLAM performed in an
outdoor setting where the scale was significantly larger than in the indoor experi-
ments. Figure 6.13 shows five heuristically derived inverse Gaussian distributions
that describe the depth of the features.
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Figure 6.13: The figure shows the five heuristically derived inverse Gaussian distri-
bution which will be tested in the outdoor experiment. d0 is respec-
tively 10, 12, 14, 16, 18 meters.

Figure 6.14 shows the estimated paths for the outdoor experiment with the initial
inverse depth distributions shown in Figure 6.13. In the experiment, I walked around
an basketball court. The total distances covered is estimated to 104 meters based on
GPS data.
It is important to note that the that correspondences between the estimate satellite
image, the GPS data, and the estimate paths are unknown. The scale has been es-
timated by dividing the length and width of the basketball court measured in pixels
on the image with the length and width of the court measured in meters via Google
Maps. The rotation and off-set are heuristically derived to get a reasonable fit. Fur-
thermore, also the GPS data is associated with errors up to 5 meters[Cor]. However,
in order to evaluate the accuracy of the estimated paths, it is assumed that these
estimations of the scale and rotation are precise enough to use the GPS path as the
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true path.
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Figure 6.14: The figure shows the estimated paths of the outdoor experiments with
different initial paths. It is seen that a higher d0 result in longer esti-
mated distances. The background image is from Google Maps[Goo].

From Figure 6.14 it is seen that increasing d0 will increase the length of the estimate
path. Based on the figure, it seems that either the estimated paths with d0 = 10 or
d0 = 12 provides the best scaling.
It is expected that the path of the GPS and the estimate paths should be very similar
to begin with. However from the figure, it is seen that this is not the case. Thus
either the chosen rotation is imprecise or the GPS path is associate with high errors
in the beginning.
Furthermore, it is seen from the figure that the estimated paths seems be more nar-
row (higher ratio between the major and the minor axis) than the GPS path. This
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trend is supported by the left subplot in Figure 6.15 that shows the absolute errors
in meters for each frame. From this figure it is seen that two maxima are found at
frame 750 and 2250 corresponding to the two more narrow sides.
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Figure 6.15: The left subfigure shows the absolute error measured calculated as the
2-norm distances between the GPS-data and each of the estimated
paths. The right subfigure shows the cumulative error relative to the
distance of the estimated path1.

From Figure 6.15, it is seen that estimated path with the initial inverse Gaussian
distribution with d0 = 12 has the lowest relative cumulative error. It has a relative
cumulative error of 13% over a distance of 104 meters. This error is a significantly
lower than the error in the indoor experiment. This is properly due to the larger
scale of this experiment. In this experiment, EKFmonoSLAM had long distances with
walking in a straight line (which are rather easy to estimate), and it had more distant
features, which made it easier for the system to estimate the rotation.
However, even by choosing a good initial inverse Gaussian distribution to describe the
depth of the features, the estimates are not accurate enough to be useful for consumer
analysis.

In this chapter it was decided to test how well EKFmonoSLAM performed with more
challenging data from a person wearing the glasses. In this investigation two issues
occurred: The scaling was incorrect and the software had difficulties handling fast
rotations.
It is only possible to determine the distance to features up to scale from a single image.
Therefore, Civera et al. use an inverse Gaussian distribution as a prior knowledge
when initializing features. The importance of this initial distribution was investigated.

1The GPS data consist of 143 observations whereas the estimated paths consist of 3420 frames.
Thus, the error is calculated as the 2-norm between every GPS observation and the estimate from
every 3420/143 = 24 frame.
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It was found that a good prior knowledge is required in order to obtain the correct
scaling. Furthermore, it was found that the standard deviation could advantageously
be dependent on the depth, and that the depth could be estimated rather accurately
by human intuition. The relative cumulative error of the indoor experiment was
found to 125 %. Based on this high error it was concluded that more research and
development has to be done in order for EKFmonoSLAM to solve the SLAM problem for
the Tobii Pro Glasses 2. Furthermore, providing the EKF with an prior distribution
to initialize features have several drawbacks. One being that it is expected that the
distance to new features follow the same distribution throughout the entire recording.
Thus, this approach would be very unlikely to work well in a recording that started
indoor and ended outdoor. Also, this approach require a lot of fine tuning and a good
prior knowledge of the recording.
Secondly, it was investigated why the EKFmonoSLAM had difficulties handling fast rota-
tions. It was found that NCC is the limiting factor to obtain more matches and that
this algorithm is very sensitive to rotation. A rotation of just a 3 degrees removed
nearly all matches in a non blurred image. This could be dealt with by using scale
and rotation invariant features such as SIFT or SURF. These algorithms are compu-
tational expensive which is why the are not used in EKFmonoSLAM. However, it could
be interesting to use SIFT features in every 10th or 20th frame as a form of a more
stable anchor points.
Finally, it was tested how well the EKFmonoSLAM did with data from an outdoor record-
ing with more distant features. Again, it was found that the prior knowledge of the
depth is important to obtain an accurate scaling. It was found that choosing a good
prior initial inverse depth distribution led to rather good path estimations. In this
test, the relative cumulative error was found to 13 %.

The next section will come with some suggestions for future work. In this section,
emphasis is put on sensor fusion.
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CHAPTER 7
Future work

Building on the results of the thesis this chapter points to future work that possibly
could improve the accuracy and robustness of the implementation, while reducing
the importance of manually selecting a good prior to obtain the correct scale. In this
chapter a great emphasis is put on sensor fusion.

It was found that the EKFmonoSLAM implementation had to be given a prior initial
inverse Gaussian distribution to estimate the correct scale and that the implementa-
tion was sensitive towards fast rotations. These two issues could potentially be coped
with by using the sensor data from the gyroscope and the accelerometer in the Tobii
Pro Glasses 2. Appendix F.1 provides a manual for extracting the accelerometer and
gyroscope data in an workable format.

As mentioned, it was found that EKFmonoSLAM had a tendency to drift during fast
turns. The gyroscope measures the angular velocity, thus using the gyroscope data
it is expected to obtain better measurements and estimations during fast turns.
To incorporate the gyroscope data into the EKF only the measurement equation
needs to be changed as the angular velocity is already modelled in the state space
representation. In appendix F.2, there is a theoretical outline of how this could be
done. This approach has already been integrated into the implementation and the
results so far are presented in the same appendix. However, based on these results
there are still need of significant parameter optimization in order to make it work in
practice.

The accelerometer could be used to give an indication of the scales. The person wear-
ing the glasses would be more likely to have high acceleration if he or she is not in
risk of bumping into objects. Thus the scale would be rather big. On the other hand,
if the person has little acceleration, it is believed that the scale is rather small.
To incorporate the accelerometer data into the EKF, the acceleration has to be mod-
elled, thus the constant velocity model currently used should be replaced by a constant
acceleration model. Furthermore, both the transition operator and the measurement
operator have to be changed. This process has theoretical been explained in Appendix
F.3. However, it has not been implemented, adapted nor have the parameters been
adjusted in order to make the model work in practice.
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This chapter has outlined some possible and promising improvements of the EKFmonoSLAM
to provide higher accuracy when using the Tobii Pro Glasses 2. The next chapter
will conclude on the findings in the thesis.



CHAPTER 8
Conclusion

The object of this thesis was to investigate if there are any published open source
SLAM project, which - directly or with modifications - can solve the SLAM problem
for the Tobii Pro Glasses 2. If so, this implementation could be useful to study con-
sumer behavior in many different settings.

Considering 34 published SLAM projects, it was found that the EKFmonoSLAM im-
plementation was the most adequate open source project to the Tobii Pro Glasses
2. The principal arguments for choosing this implementation were the use of an Ex-
tended Kalman Filter, which provided the opportunity to use multiple sensors, the
well-acknowledged authors, the 3D map modelling, and the fact that it was imple-
mented in Matlab.

The EKFmonoSLAM implementation was adapted to the Tobii Pro Glasses 2 by lowering
the thresholds for the feature detector to 20, decreasing the image size to 384x216,
and calibrating the front camera of the glasses. The implementation was validated
by successfully replicating the results obtained by Civera et al. in experiments where
the glasses were hand-held.

When testing how well the implementation performed when the glasses were head-
worn, it was found that two issues occurred: First, the implementation could not
determine the scale of the map without prior knowledge about the depths of the land-
marks. Second, a drift occurred in experiments with fast rotations.
As the features were modelled in inverse depth coordinates, an inverse Gaussian distri-
bution was used as a prior to model the depth of the features. It was found that the
standard deviation of this distribution could advantageously depend on the depth.
Furthermore, it was found that a good prior depth can be obtained by manually
studying the recording and investigating the inverse Gaussian distribution.
It was found that the drift was due to few and erroneous feature correspondences
during turns. It was established that Active Search was not the limiting factor to
obtain more feature matches. However, it was found that the non-rotation invariant
NCC was very sensitive to rotation and thus the number of matches was dramatically
reduced with just three degrees of rotation.
Conclusively, it was found that by manually choosing a good prior distribution, the
relative cumulative error in a 12 meter indoor experiment could be reduced to 125%
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which is far too much to be useful in any practical setting. However, better results
were obtained in a 104 meters outdoor experiment where the relative cumulative error
could be reduced to 13%, which is much better, but not useful for studies of consumer
behavior, which mostly takes place indoors.

Thus, based on this empirical investigation, which includes extensive data-gathering,
this thesis concludes that even the apparently best open-source SLAM project does
not give sufficient precision to provide useful information about consumer behavior
in an indoor setting. Further research and development is necessary in order to solve
the SLAM problem for the Tobii Pro Glasses 2.
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Table A.1: The table shows a description of all 34 of the open source SLAM projects available at OpenSLAM.org. Key
stats as which algorithm is used, which requirements, 3-D support etc. are listed. Furthermore, a short
description of the projects are also included. Most of the information is collected from [Bac17].

Hardware
and soft-
ware
require-
ments

Algorithm Author Input Data Type of map Dato Description 3D
sup-
port

2D-I-SLSJF Matlab Iterated
Sparse
Local
Submap
Joining
Filter
(SLSJF)

Shoudong Huang
and Zhan Wang

A sequence of small
loal maps, each lo-
cal map contain a
state vector esti-
mate and the cor-
responding covari-
ance matrix.

point feature
maps

2009 I-SLSJF is a local submap joining algorithm using sparse informa-
tion filter and least squares optimization. The input of I-SLSJF
is a sequence of local maps and the output of I-SLSJF is a global
map. The preprocessed Victoria Park data set and the corrected
DLR-Spatial-Cognition data set are provided to demonstrate the
algorithm.

No

CAS-Toolbox Matlab EKF Kai O. Arras Sensor and odome-
try data

Feature
maps

2007 This software is a GNU GPL licenced Matlab toolbox for robot
localization and mapping. It is made for research and education
and independent on the type(s) of feature and type(s) of sensors/
It can import a number of data file formats from any sensor. It
allows you to plug in and out your feature extraction, odometry
model, data association strategy, etc. and to plug in and out your
SLAM or Localization approach. It furthermore comes with a
number of useful tools and functions.

No

CEKF-SLAM MATLAB Compressed
Extended
Kalman
Filter

Haiqiang Zhang
and Lihua Dou

Sensor and odome-
try data

Feature
maps

2007 CEKF-SLAM was originally proposed by Jose Guivant and Ed-
uardo Net. This algorithm reduces the computational complexity
by dividing the system state vector into two parts: the active local
state vector and the others. Only the local state vector is updated
for each step by EKF, and the necessary information for updating
the other states is compressed into some auxiliary cofficient ma-
trices. When the local area changes, a full update was executed
to get the same estimation results as EKF.

No

COP-SLAM C++ and
Matlab

g2o Gijs Dubbel-
man;Brett Brown-
ing;

COP-SLAM takes
as input g2o pose
graph files, which
specify nodes and
edges of a pose
graph. Example
data sets with a to-
tal length of 60 kilo-
meters are provided
with the demo pro-
gram.

Pose-chains 2012 COP-SLAM is a highly efficient closed-form 3-D SLAM approach,
It optimizes pose-chains on-line and it is compatible with g2o.
The COP-SLAM demo program comes with 60 kilometers of pose-
chain datasets, which are obtained with visual odometry and
appearance-based loop detection.

Yes

DP-SLAM Linux efficiently
main-
taining
a joint
distribu-
tion over
robot
maps and
poses.

Austin Eli-
azar;Ronald Parr;

The approach
takes raw laser
range data and
odometry.

grid maps 2007 DP-SLAM aims to achieve truly simultaneous localization and
mapping without landmarks. While DP-SLAM is compatible with
techniques that correct maps when a loop is closed, we have found
that DP-SLAM is accurate enough that no special loop closing
techniqu
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EKFMonoSLAM Matlab EKF Javier Civera;J. M.
M. Montiel;

monocular image
sequence and its
camera calibration

A sparse
3D map of
salient point
features

2010 EKFmonocularSLAM contains Matlab code for EKF SLAM from
a 6 DOF motion monocular image sequence. The algorithm takes
as input a monocular image sequence and its camera calibration
and outputs the estimated camera motion and a sparse map of
salient point features. The code includes state-of-the-art contri-
butions to EKF SLAM from a monocular camera: inverse depth
parametrization for 3D points and efficient 1-point RANSAC for
spurious rejection.

Yes

FalkoLib C++ ? Fabjan
Kallasi;Dario Lodi
Rizzini;Stefano
Caselli;

The approach takes
raw laser range
data. Odometry
can be used for test-
ing the association
between features.

feature maps 2016 FALKOLib is a library containing keypoint detectors for the sta-
ble detection of interest points in laser measurements and two
descriptors for robust associations.

No

FLIRTLib C++ Fast
Laser
Interest
Region
Trans-
form

Gian Diego
Tipaldi;Kai O.
Arras;

? ? 2010 FLIRTLib is a data association library to be used as a front end
for graph based mapping, using RANSAC and multi-scale interest
point. It implements four different multi-scale feature detectors
and two feature descriptors for 2D range data. It is written in
C++ and provides an API reference (written using Doxygen) and
a set of example binaries to visualize the detector results and the
descriptors, as well as perform scan to scan matching.

No

G2O C++ Graph
Optimiza-
tion

Rainer Kuem-
merle;Giorgio
Grisetti;Hauke
Strasdat;Kurt
Konolige;Wolfram
Burgard;

Nodes and edges of
a graph.

Graphs
(nodes and
edge)

2011 g2o is an open-source C++ framework for optimizing graph-based
nonlinear error functions. g2o has been designed to be easily ex-
tensible to a wide range of problems and a new problem typically
can be specified in a few lines of code. The current implementa-
tion provides solutions to several variants of SLAM and BA.

Yes

GMapping C++ A Rao-
Blackwellized
particle
filter

Giorgio
Grisetti;Cyrill
Stachniss;Wolfram
Burgard;

laser range data grid maps 2007 GMapping is a highly efficient Rao-Blackwellized particle filer to
learn grid maps from laser range data.

Yes

GridSLAM C++ A Rao-
Blackwellized
particle
filter

Dirk
Haehnel;Dieter
Fox;Wolfram Bur-
gard;Sebastian
Thrun;

laser range data grid maps 2003 GridSLAM is an easy to use and understand Rao-Blackwellized
particle filer to learn grid maps from laser range data.

HOG-Man C++ Graph
Optimiza-
tion

Giorgio
Grisetti;Rainer
Kuemmerle;Cyrill
Stachniss;

Nodes and edges of
a graph.

Graphs 2010 HOG-Man is an optimization approach for graph-based SLAM. It
provides a highly efficient error minimization procedure that con-
siders the the underlying space is a manifold and not a Euclidian
space. It furthermore generates a hierarchy of pose-graphs which
is used perform the operations during online mapping in a highly
efficient way. The approach works in 2D and 3D.

Yes

iSAM C++ Graph
Optimiza-
tion

Michael
Kaess;Hordur
Johannsson;John
Leonard;

Factor graph:
Nodes (variables)
and factors (mea-
surements)

Feature-
based or
pose graph

2009 iSAM is a general optimization library for incremental sparse non-
linear problems as encountered in simultaneous localization and
mapping (SLAM).

Yes

Linear SLAM C++ and
Matlab

Graph
Optimiza-
tion

Liang
Zhao;Shoudong
Huang;Gamini
Dissanayake;

The input to the
Linear SLAM algo-
rithm is a sequence
of local submaps.
Each local map con-
tains a state vector
estimate and the
corresponding infor-
mation matrix.

Pose fea-
ture or pose
graph map

2013 Linear SLAM: A Linear Solution to the Feature-based, Pose
Graph and D-SLAM based on Submap Joining.

Yes
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Max-Mixture C++ Graph
Optimiza-
tion

Pratik Agar-
wal;Edwin Ol-
son;Wolfram Bur-
gard;

Nodes and edges of
a graph.

Graphs
(nodes and
edge)

2013 Max-mixture allows handling large number of outliers and mul-
timodal constraints in the least square SLAM formulation. The
code here is implemented as a plugin for g2o.

yes

MTK Matlab Graph
Optimiza-
tion

Christoph
Hertzberg;Rene
Wagner;Oliver
Birbach;

Input operations
have to be imple-
mented by the
user.

MTK is only
used to rep-
resent states.
SLoM can
operate on
arbitrary fea-
ture based
maps or
calibration
problems.

MTK is a toolkit that provides easy mechanisms to enable arbi-
trary algorithms to operate on manifolds. The main application is
the use of 3D rotations SO(3), as well as the construction of com-
pound manifolds from arbitrary combinations of sub-manifolds.

OpenRatSLAM C++ Graph
Optimiza-
tion

Michael Milford
(algorithm);Gordon
Wyeth (algo-
rithm);David Ball
(code);Scott Heath
(code);

OpenRatSLAM
takes mono images
and odometry as
standard ROS mes-
sages. The images
can be forward
facing or omnidirec-
tional and can be
high or low quality.

topological
maps

2013 RatSLAM is a robot navigation and SLAM system based on com-
putational models of the hippocampus. The approach uses a com-
bination of appearance based visual scene matching, competitive
attractor networks, and a semi-metric topological map represen-
tation. The approach has been proven in a real tiem 40 hour
robot delivery task, mapping an entire Australian suburb and on
Oxford’s New College dataset. Notably, RatSLAM works well on
images obtained from cheap cameras. The RatSLAM system con-
trasts many of the other SLAM approaches that involve expensive
precision laser sensors and occupancy grids.

Yes.

ORB-SLAM ROS Graph
Optimiza-
tion

Raul Mur-Artal;J.
M. M. Mon-
tiel;Juan D. Tar-
dos;

Monochrome/Color
Images

Sparse
3D points,
keyFrame
poses and
covisibility
graph

2015 ORB-SLAM is a keyframe and feature-based Monocular SLAM.
It operates in real-time in large environments, being able to close
loops and perform camera relocalisation from very different view-
points.

Yes

OpenSeqSLAM Matlab Sequence-
based
algorithm

Niko Suenderhauf; Images Graphs 2012 OpenSeqSLAM is an open source Matlab implementation of the
original SeqSLAM algorithm published by Milford and Wyeth at
ICRA12. SeqSLAM performs place recognition by matching se-
quences of images.

Yes

ParallaxBA C++ Graph
Optimiza-
tion

Liang
Zhao;Shoudong
Huang; Yanbiao
Sun;Gamini Dis-
sanayake;

The input of Par-
allaxBA is the
matched image
points, camera
calibration matrix,
as well as the initial
values of camera
poses and features
(optional).

3D point
features and
camera poses

ParallaxBA: Bundle Adjustment using Parallax Angle Feature
Parametrization.

Pkg. of T.Bailey Matlab EFK,
UKF,
Fast-
SLAM 1,
and Fast-
SLAM2.

Tim Bailey; feature maps 2007 This package is a collection of implemented SLAM approaches by
Tim Bailey. The code is written in MatLab and performs EFK,
UKF, FastSLAM 1, and FastSLAM2.
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RGBDSlam ROS
Diamond-
back and
HOG-
Man.

Graph
Optimiza-
tion

Felix En-
dres;Juergen
Hess; Nikolas
Engelhard;Juergen
Sturm;Wolfram
Burgard;

Monochrome and
depth image, col-
ored point cloud

Pose graph
with colored
point clouds

2012 RGBDSLAM allows to quickly acquire colored 3D models of ob-
jects and indoor scenes with a hand-held Kinect-style camera. It
provides a SLAM front-end based on visual features s.a. SURF
or SIFT to match pairs of acquired images, and uses RANSAC
to robustly estimate the 3D transformation between them. The
resulting camera pose graph is then optimized with the SLAM
back-end HOG-Man.

Yes

Robomap Studio Matlab Monto
Carlo

Jerry Moravec; 2DLS - sensorial
data

Line maps 2011 ROBOMAP Studio is a set of useful programs to processing data
from 2DLS, mainly focused to continual and global localization
and SLAM.

No.

RobotVision C++ Graph
Optimiza-
tion

Hauke Stras-
dat;Steven Love-
grove;Andrew J.
Davison;

RobotVision is pri-
marily designed as
a library, not as
a standalone appli-
cation. However,
it comes with some
demo applications.

Feature
maps and
pose graphs

2010 RobotVision is a library for techniques used on the intersection of
robotics and vision. The main focus is visual monocular SLAM. It
is written in C++ – partially using object-oriented and template
meta programming. Thus, most techniques can be easily adapted
to other applications - e.g. range-and-bearing SLAM.

Yes.

ro-slam C++ Monto
Carlo

Jose Luis
Blanco;Juan An-
tonio Fernandez
Madrigal;Javier
Gonzalez Jimenez;

Pairs of action
(movements from
odometry) + ob-
servation (sensed
ranges to a set of
static beacons).

Landmarks 2008 This is a C++ implementation for generic RBPF-SLAM with dif-
ferent kinds of maps, including one solution to Range-Only SLAM
(RO-SLAM) with landmark maps represented as Sum of Gaus-
sians (SOGs), which are dynamically adapted to represent well
the uncertainty of all mapped beacons. There exists a stand-alone
executable ready for use and demo configuration files and datasets.

Yes

SLAM6D C++ Andreas Nuechter;
Kai Lingemann;
Jochen Sprickerhof;
Dorit Borrmann;
Jan Elseberg; Peter
Schneider; Deyuan
Qui;

3D scan data in var-
ious file formats.

3D point
clouds

2009 This project consists of a software to register 3D point clouds into
a common coordinate system, as well as a viewer to display the
scene. For the registration, different ICP minimizing algorithms
can be chosen, as well as global relaxation methods, aiming at
generating an overall globally consistent scene. Several formats for
the point clouds are supported, new formats can be implemented
easily.

Yes

SLOM Out of
date

Out of
date

Out of date Out of date Out of date 2008 The SLoM-Framework provides a framework to optimize arbitrary
Least-Square Problems on Manifolds. This version of SLoM is
out-dated and merely provided for historic reasons. SLoM is now
part of the Manifold ToolKit (MTK) which is also available on
OpenSLAM.

Out of
date

SSA2D C++ Graph
Optimiza-
tion

Michael
Ruhnke;Rainer
Kuemmerle;Giorgio
Grisetti;Wolfram
Burgard;

Nodes and edges of
a graph.

Graphs
(nodes and
edge)

2011 SSA is an open-source C++ tool for post optimization of graph-
based 2D SLAM solutions. SSA iteratively refines robot poses
and 2D surface points in one global graph optimization system
and produces highly accurate 2D laser maps. Laser scans are not
treated as rigid body and might be refined during the optimization
procedure. This leads to substantially less accumulated noise in
the resulting map. SSA uses g2o as optimization back-end.

No.

tinySLAM C A particle
filter

Bruno
Steux;Oussama
El Hamzaoui;

The approach
takes raw laser
range data and
odometry.

Grid maps 2010 tinySLAM is Laser-SLAM algorithm which has been programmed
in less than 200 lines of C-language code.

No.

TJTF for SLAM Java thin junc-
tion tree
filters

Mark A. Paskin; feature maps grid maps 2007 This software package implements a filtering technique that main-
tains a tractable approximation of the belief state as a thin junc-
tion tree. The junction tree grows under filter updates and is peri-
odically “thinned” via efficient maximum likelihood projections so
inference remains tractable. When applied to the SLAM problem,
these thin junction tree filters have a linear-space belief state and
a linear-time filtering operation. Further approximation yields a
filtering operation that is often constant-time.

No.
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TORO C++ Graph
Optimiza-
tion

Giorgio
Grisetti;Cyrill
Stachniss;Slawomir
Grzonka;Wolfram
Burgard;

Nodes and edges of
a graph.

Graphs
(nodes and
edge)

2009 TORO is an optimization approach for constraint-network. It
provides an efficient, gradient descent-based error minimization
procedure. There is a 2D and a 3D version of TORO available.

Yes.

TreeMap C++ Graph
Optimiza-
tion

Udo Frese; The input to
treemap are mea-
surements with co-
variance and known
data-association

The result-
ing map
is a vector
of feature
positions
(2D/3D fea-
ture based
SLAM) or
robot poses
(2D/3DOF
pose relation
SLAM).

2007 Treemap is an algorithm for feature based Gaussian SLAM. Ac-
tually it is an algorithm for incremental probabilistic inference in
a high dimensional Gaussian defined as the product of many low
dimensional Gaussians (incremental least square). Treemap can
handle different variants of SLAM. Everything, that’s specific to
a SLAM variant or even to SLAM as a problem is contained in a
small driver layer that can be adapted by the user.

Yes.

UFastSLAM Matlab A Rap-
Backwellized
particle
filter

Chanki Kim; laser range and
odometry informa-
tion

grid maps 2011 Unscented fastslam is a Rao-Backwellized unscented particle fil-
ter that uses the unscented filter for both the localization and
mapping.

No

Vertigo C++ Graph
Optimiza-
tion

Niko Suenderhauf; nodes and edges of
a pose graph

pose graphs 2012 Vertigo is a C++ extension for g2o and gtam. It provides an im-
plementation of switchable constraints and enables g2o and gtsam
to solve pose graph SLAM problems despite the presence of false
positive loop closure constraints.

Yes



APPENDIX B
Extended comments

& remarks
The purpose of this appendix is to improve the readers understanding of some con-
cepts by giving more elaborate explanations than it was assessed appropriate in the
main text.

B.1 Basis of the calculated error functions
The purpose of this section is to explain how the error function is calculated. Each
line in Figure B.1 shows an average of 6 runs using different initial inverse Gaussian
distributions.
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Figure B.1: Each line in the figure shows an average of 6 runs of the EKFmonoSLAM
with different thresholds.



92 B Extended comments & remarks

From Figure B.1 it is seen that the biggest d0 estimates the biggest path and that
the smallest d0 estimates the smallest path.

The error function is calculated by measuring the distance to the the ellipse (the
black dotted line) for each observed point. Thus, the true path is divided into equally
distanced points, and the distance can thus be calculated as the 2-norm between these
points and the observed points. In doing so, it is assumed that the estimated path has
constant velocity. This is not the case, however it is assessed that the calculated error
function gives a good approximation of the true error function, and thus is adequate
to use as an evaluation of the accuracy.

B.2 Inverse Gaussian distribution
The section strives to give the reader a more intuitive understanding of the inverse
Gaussian distribution used to initialize inverse depth coordinates. The inverse Gaus-
sian distribution takes two parameters: The mean and the shape. In Figure B.2 the
inverse Gaussian distribution is seen with a fixed shape and varying means.

0 5 10 15

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

mean = 0.5

distance

p
ro

b
a

b
ili

ty

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

mean = 1

distance

p
ro

b
a

b
ili

ty

0 5 10 15

0
.0

0
0

.1
0

0
.2

0
0

.3
0

mean = 3

distance

p
ro

b
a

b
ili

ty

0 5 10 15

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

mean = 4.5

distance

p
ro

b
a

b
ili

ty

Figure B.2: The figure shows the inverse Gaussian distribution for different means
and a fixed shape. The red lines indicate the 95 % confidence intervals
whereas the blue line indicate the median.

From Figure B.2 it is seen that the distribution rises to its peak and the goes to zeros
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slowly. It has a long tail. In practice low parallax features have a high uncertainty
(variance). This means that its inverse Gaussian distribution will be very wide and its
tail very long which makes its very difficult to determine the depth of a low parallax
features. Also, it is seen from Figure B.2 that increasing the mean allows for more
distant features as the confidence intervals grows wider.

Figure B.3 shows how the shape effects the distribution.
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Figure B.3: The figure shows the inverse Gaussian distribution for different shapes
and a fixed mean. The red lines indicate the 95 % confidence intervals
whereas the blue line indicate the median.

The figure B.3 shows the a high shape will make the distribution more symmetric -
looking more like a normal distribution - whereas a low shape will center most of the
probability as one point and thus have very wide and strew confidence intervals.

B.3 Spherical to Cartesian Coordinates
Figure B.4 gives an illustrative explanation between spherical and Cartesian coordi-
nates. The purpose of the figure is to illustrate how these two are related.
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Figure B.4: The figure shows how the point P can be described by spherical coor-
dinates and Cartesian coordinates. [Mat17]



APPENDIX C
Linearizing the

transition operator
This section describes how the non-linear transition Equation 3.12 can be linearized
by differentition around a point.

The non-linear transition operator F1 is described by the following formula that maps
from step k to step k + 1.

x
g
k+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
gk+1

qk+1

vk+1

ωk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= F1 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
gk

qk

vk

ωk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
gk + vk∆t

qk × q(ω∆t)
vk

ωk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.1)

where q is the quaternion of ω∆t. This transition equation assumes constant linear
and angular velocities. This v and ω do not vary over time.

The non-linear part of the transition equation is updating of the orientation qk+1 =
qk ×q(ω∆t). By expanding this expression one realize that this is non-linear because
the two variables are multiplied.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆t(q0 ω0 − qx ωx − qy ωy − qz ωz)
∆t(q0 ωx + qx ω0 + qy ωz − qz ωy)
∆t(q0 ωy − qx ωz + qy ω0 + qz ωx)
∆t(q0 ωz + qx ωy − qy ωx + qz ω0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (C.2)

This equation needs to be linearize in order to put the system of the form xk+1 = F⋅xk.
To linearize, we differentiate wrt. the state vector, which gives⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆t(q0 − qx − qy − qz + ω0 − ωx − ωy − ωz)
∆t(q0 + qx + qy − qz + ω0 + ωx − ωy + ωz)
∆t(q0 − qx + qy + qz + ω0 + ωx + ωy − ωz)
∆t(q0 + qx − qy + qz + ω0 − ωx + ωy + ωz)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (C.3)
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By applying Equation C.3, the system becomes linear and can be expressed put on matrix form as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gx
k+1

gy
k+1

gz
k+1

q0
k+1

qx
k+1

qy
k+1

qz
k+1

vx
k+1

vy
k+1

vz
k+1

wx
k+1

wy
k+1

wz
k+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 ∆t 0 0 0 0 0

0 1 0 0 0 0 0 0 ∆t 0 0 0 0

0 0 1 0 0 0 0 0 0 ∆t 0 0 0

0 0 0 ∆t −∆t −∆t −∆t 0 0 0 −∆t −∆t −∆t

0 0 0 ∆t ∆t ∆t −∆t 0 0 0 ∆t ∆t −∆t

0 0 0 −∆t ∆t ∆t ∆t 0 0 0 −∆t ∆t ∆t

0 0 0 ∆t −∆t ∆t ∆t 0 0 0 ∆t −∆t ∆t

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.4)

This section has described how the non linear transition operator can be linerized and how the transition equation
(Equation 3.12) can be expressed written on the matrix form.



APPENDIX D
Links for experiments

Experiment 1
.
http://elers.dk/Videos/atDesk.mp4
http://elers.dk/Videos/loop.mp4
http://elers.dk/Videos/aroundImageLab.mp4

Experiment 2

http://elers.dk/Videos/aroundImageLab2.mp4
http://elers.dk/Videos/Recording011.mp4

Experiment 3

http://elers.dk/Videos/outdoor.mp4
http://elers.dk/Videos/Recording013.mp4

Experiment 4

http://elers.dk/Videos/Recording016.mp4
http://elers.dk/Videos/Recording017.mp4

Experiment 5

http://elers.dk/Videos/shortDataRecordings.zip

Experiment 6

http://elers.dk/Videos/recordings.zip

Experiment 7

http://elers.dk/Videos/firkantWalk.mp4
http://elers.dk/Videos/fullstream.mp4
http://elers.dk/Videos/halfcircleandauditorium.mp4
http://elers.dk/Videos/rotationTest.mp4

http://elers.dk/Videos/atDesk.mp4
http://elers.dk/Videos/loop.mp4
http://elers.dk/Videos/aroundImageLab.mp4
http://elers.dk/Videos/aroundImageLab2.mp4
http://elers.dk/Videos/Recording011.mp4
http://elers.dk/Videos/outdoor.mp4
http://elers.dk/Videos/Recording013.mp4
http://elers.dk/Videos/Recording016.mp4
http://elers.dk/Videos/Recording017.mp4
http://elers.dk/Videos/shortDataRecordings.zip
http://elers.dk/Videos/recordings.zip
http://elers.dk/Videos/firkantWalk.mp4
http://elers.dk/Videos/fullstream.mp4
http://elers.dk/Videos/halfcircleandauditorium.mp4
http://elers.dk/Videos/rotationTest.mp4
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APPENDIX E
Software Manual

A big part of this project have been to understand and test EKFmonoSLAM. EKFmonoSLAM
is a huge program consisting of 131 files. Therefore, it is chosen to dedicated a section
to give an overview of the software and a short introduction to readers who will con-
tinue working with the software. Civera et al. [Civ+10] gives a similar outline of the
algorithm, however their description is kept in a very general and not implementation
specific pseudo-code. This section will give a more low level, language specific outline
of the software and the data structure that will hopefully make it easier for future
users of the implementation.

EKFmonoSLAM is written by Javier Civera and J. M. M. Montiel [Civ+10]. It dates
from 2010 and can be downloaded freely from his web page1. From this web page, it
is also possible to find videos of their results.

E.1 Getting started
To begin with EKFmonoSLAM has included a image sequence. Thus, the software can
be tested just by running the main script mono_slam.m. Note that in Matlab 2017
update.m is a reserved file name, thus one needs to change the file name of one of
the functions.

If it is wished to use another data from another camera, one needs to calibrate the
camera used to record this data and update the file initial_camera.m with the
appropriate camera parameters. This is described in more detailed in the Camera
Calibration section.

E.2 Overview of the software
The core of EKFmonoSLAM is the script mono_slam.m. This script is very useful to give
an overview of the algorithm. In this subsection, some extended comment will be
added to the most important functions called from this script. It will be discuss which
hard code thresholds can be tuned to obtain better results. Note that some functions

1http://webdiis.unizar.es/ jcivera/code/1p-ransac-ekf-monoslam.html
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and variable initialization have been excluded from the original script [JM08] to give
a better overview.

1 % Camera calibration
2 cam = initialize_cam;
3

4 % Initialize state vector and covariance
5 [x_k_k, p_k_k] = initialize_x_and_p;
6

7 % Initialize EKF filter
8 sigma_a = 0.007; % standard deviation for linear acceleration noise
9 sigma_alpha = 0.007; % standard deviation for angular acceleration noise

10 sigma_image_noise = 1.0; % standard deviation for measurement noise
11 filter = ekf_filter( x_k_k, p_k_k, sigma_a, sigma_alpha, sigma_image_noise,

'constant_velocity' );
12

13 % variables initialization
14 features_info = [];
15 trajectory = zeros( 7, lastIm - initIm );
16

17 im = takeImage( sequencePath, initIm );
18

19 for step=initIm+1:lastIm
20

21 % Map management (adding and deleting features; and converting inverse
depth to Euclidean)

22 [ filter, features_info ] = map_management( filter, features_info, cam,
im, min_number_of_features_in_image , step );

23

24 % EKF prediction (state and measurement prediction)
25 [ filter, features_info ] = ekf_prediction( filter, features_info );
26

27 % Grab image
28 im = takeImage( sequencePath, step );
29

30 % Search for individually compatible matches
31 features_info = search_IC_matches( filter, features_info, cam, im );
32

33 % 1-Point RANSAC hypothesis and selection of low-innovation inliers
34 features_info = ransac_hypotheses( filter, features_info, cam );
35

36 % Partial update using low-innovation inliers
37 filter = ekf_update_li_inliers( filter, features_info );
38

39 % "Rescue" high-innovation inliers
40 features_info = rescue_hi_inliers( filter, features_info, cam );
41

42 % Partial update using high-innovation inliers
43 filter = ekf_update_hi_inliers( filter, features_info );
44

45 end
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E.2.0.1 Line 1-15

The first 15 lines deals mainly with initialization. The camera parameters are set in
initialize_cam.m. For details on the calibration please see the section 5.2.

In initialize_x_and_p, the initial position, orientation, linear, and angular velocity
of the model is set. Also, the initial uncertainty about these quantities are initialized.
It is important to note that the size of state vector x_k_k and the matrix p_k_k
change during program scope. The first 13 positions of x_k_k are the position, ori-
entation, linear, and angular velocity. The rest of the indexes are features stored
in inverse depth or euclidean coordinates. Likewise, the top 13 x 13 matrix is the
uncertainty of the camera position orientation, linear, and angular velocity. The rest
of p_k_k is the uncertainty about the features.

sigma_a, sigma_alpha, and sigma_image_noise are constant that described the un-
certainty of the model and the observations. Thus, with a high sigma_image_noise
the model will trust the model more than the observations, and on the other hand
with a low sigma_image_noise it will trust the observations more than the model.
Likewise, sigma_a and sigma_alpha describe the uncertainty about the model.

The ekf_filter.m initializes a Matlab struct with the above specified information.
The important thing is to note that it initializes a constant velocity model. This can
be altered to other models as constant orientation, constant position, etc.

features_info is a Matlab struct containing all information about the detected
landmarks. This struct is central in keeping track of all the landmarks and their
history. The data contained in the struct is used to determine whether to represent
the landmarks in inverse depth or euclidean coordinates. The trajectory is simply
the position and the orientation of the camera through the program scope. This is
only used for plotting the results.

E.2.0.2 Line 22

The function map_management.m deals with updating the struct features_info. First
of all, it deletes features if they are not measured half as many times as they are
predicted. Then it checks if some features represented by inverse depth coordinates
can be converted into euclidean coordinates based on a linearity index. And finally, it
deals with adding new features. This is done through the functions initialize_a_feature.m
that calls fast_corner_detect_9.m and fast_nonmax.m that both takes a hard
coded threshold that determines how many features are detected. To obtain real-
time performance a high threshold should be chosen, however to obtain better results
the threshold should be decreased (See Section 5.4).
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E.2.0.3 Line 25

The ekf_prediction.m makes a prediction about the next state for the features
and the camera using the formulas described in the sections about the Transition
Equations. In this script it is possible to alter to other models such as ’constant
orientation’ or ’constant position’.

E.2.0.4 Line 31

The search_IC_matches.m find matches between features ind the features_info
and features found in a new image. The functions only updates features_info
based on whether the features a matched or not. The search_IC_matches.m uses
the uncertainty about the features in features_info to perform Active Search. Based
on the uncertainty of ones’ parameters it is possible to tune the search region in this
function. This can be a good idea if the software have a difficulties initializing, because
the greatest uncertainty is in the first step. From a function called matching.m, it is
possible to adjust the threshold for correlation to enable more matches.

E.2.0.5 Line 34

The ransac_hypotheses.m function takes a random match and makes a state update
based on this one point. The function compute_hypothesis_support_fast.m is
used to compute the support of the hypothesis. The sigma_image_noise is used
as a threshold to compute the support of a hypothesis. When a hypothesis has
enough support, the features_info is updated with the update feature positions.
The formulas are described in more detail in the section 3.9.

E.2.0.6 Line 37-43

The rest of the loop deals with updating the filter. This is first done by updating
the model based on the low innovation inliers (the features with small distance to
the most supported hypothesis) in ekf_update_li_inliers.m. The low innovation
inliers are often distant points as they are often viewed more stationary.
This updating greatly reduced the uncertainty about the model. This reduction in
uncertainty is used to rescue high innovation inliers in rescue_hi_inliers.m. These
high innovation inliers are often closer points where the translation has greater influ-
ences on their position. Finally, the filter is updated based on these high innovation
inliers in the function ekf_update_li_inliers.m.

This section has presented the EKFmonoSLAM Matlab implementation. It is briefly
discussed how to get started using the software. A low level, implementation specific
overview of the software is provided (for a more general description [Civ+10]). In
this overview, it is highlighted where in the code it is possible to change hard code
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values and the effect of these changes are briefly discussed. In the next section, it will
be explained how data was collected.
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APPENDIX F
Sensor Fusion

The IMU that is mounted on the Tobii Pro Glasses 2 provides accelerometer and
gyroscope data. Using multiple data sources provides a more nuanced representation
of the world and should provide a better estimate of the path. In order to use this
extra sensor information to support, it is needed to extend the model. This section
will describe how the model is changed in order to support the IMU sensor.

F.1 Extracting gyroscope & accelerometer data

The Tobii Pro Glasses 2 automatically collects eye-tracking, accelerometer, and gyro-
scope data. The data can be obtained from the memory card, however it is stored in
a json format which is rather troublesome for most analytic software besides Tobii’s
own. [Wul17] has made a detailed investigation of the json file and have also devel-
oped a tool that convert the data into three comma separated txt files. The software
1 output three separate file (one containing the the eye-tracking data, one containing
the accelerometer data, and one containing the gyroscope data), since these are col-
lected with respectively 50Hz, 100Hz, and 95Hz [Wul17]. The section will focus on
further processing of the accelerometer and gyroscope data. For detailed information
on the raw data and the eye-tracking data please read [Wul17].

The unit for the accelerometer is meter per second squared and the unit for the gy-
roscope is degrees per second. The accelerometer data is collected with 100Hz and
the gyroscope data is collected with 95Hz [Wul17]. The video feed is collected with
25Hz, thus in order to incorporated the accelerometer and gyroscope data into the
EKF, it is chosen to reduce the frequency of the accelerometer and gyroscope data.
This is done by taking an average of every fourth observation for the accelerometer
data, and an average of every 3.8 observation for the gyroscope data, thus equal time
intervals between each observation are obtained.

1The software tool can be found on Git: https://github.com/anwul4/Tobii_JsonToTxtConversionTool
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F.2 Incorporating the gyroscope
Only the measurement equation has to be altered in order to use the gyroscope data.
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where H is measurement operator described in Section 3.6, thus the two top rows
are the linearization of this operator. From this equation it is seen that it is rather
simple to add new sensors.

In practice, the additional row can be implemented in a separate function, thus divid-
ing the updating of the filter into three instead of two. Thus, the following function
will incorporate the gyroscope measurements.

1 function filter = ekf_update_gyro(filter, gyro)
2

3 % mount vectors and matrices for the update
4

5 % get measurements
6 z = gyro';
7 % get angular velocity from state vector
8 x_k_k = filter.x_k_k;
9 h = x_k_k(11:13);

10

11 % initialize the measurement operator H
12 H = zeros(length(z),length(x_k_k));
13 H(1:length(z),11:13) = eye(length(z));
14

15 % Decide on the error associated with gyroscope measurements.
16

17 %R = 0.00001*eye(length(z)); %very low!
18 %R = 0.0001*eye(length(z)); %low!
19 %R = 0.001*eye(length(z)); %medium!
20 %R = 0.01*eye(length(z)); %high!
21 %R = 0.1*eye(length(z)); %very high!
22 R = 1*eye(length(z)); %very very high!
23

24

25 % Update filter.
26 [ filter.x_k_k, filter.p_k_k ] = update_filter( filter.x_k_km1, filter.

p_k_km1, H,...
27 R, z, h );
28

29 end
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Using the above function, it was possible to try out different noise terms. Figure F.1
shows how the angular velocity is modelled using different noise terms.
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Figure F.1: The figure shows how the angular velocity is dependent on the choice of
the error associated with the observations. Producing these plots, the
EKF only used gyroscope data to update. The blue line is the angular
velocity modelled in the state vector and the red line is the observations
from the gyroscope.

The modelled angular velocity effects the orientation through the transition equation.
This is shown in Figure F.2, where the orientation without the gyroscope is the blue
line and the orientation with different noise terms are the red and green lines.
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Figure F.2: The figure shows the orientation of the state vector when the gyroscope
data is not used and for two difference choices of the error.

Finally, the orientation effects the position through the transition equation. Figure



108 F Sensor Fusion

F.3 shows the final path for the experiment using the data from the gyroscope and
for an experiment where this data has not been used. It is seen from this figure that
the estimate path without the gyroscope data is best.

Figure F.3: This figure shows the final path for the loop recording in Experiment 1
Section 4.1. From the figure it is seen that the final path is closer to a
loop closing when the gyroscope data is not used.

Based on these observations it seem as the partial update of the EKF works as
expected. However, it does not seem to be any improvements right away. However, it
is believed that further fine tuning of the associated error in the update function could
result in improved accuracy especially during fast turns. However, more research and
development has to be put into this implementation.

F.3 Incorporating the gyroscope & accelerometer
Because we want to update the prediction with respect to the measured acceleration,
we need to model the acceleration. Thus, the acceleration in the x, y, z direction is
added to the state vector. Note that we already model the angular velocity and thus
we do not need to further change the state vector in order to use the measurements
from the gyroscope sensor.

By modelling the acceleration in the state vector, the we cannot model the accelera-
tion as noise any more. Therefore, the transition of position and velocity also becomes
dependent on the acceleration (Equation F.2). This means that we use a constant
acceleration model instead of as previous a constant velocity model.
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where a is the acceleration in the x, y, z direction.

Besides changing the transition equation, it is also needed to modify the measurement
operator that maps from the model space to the measurement space. The measure-
ments space is no longer 2 dimensions (the image plane) but is now 8 dimensions
(image plane, gyroscope measurements, and acceleration measurements). A big ad-
vantage with the EKF is that it is rather straightforward to add sensors. Each row in
the measurement operator corresponds to a sensor dimension. Thus the measurement
equation z = Hx can be formulated as
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where H is measurement operator described in Section 3.6, thus the two top rows are
the linearization of this operator. From this equation it is seen that it is rather simple
to add new sensors. Especially in this case where we already model the acceleration
and orientation in the same form as they are measured by the IMU.

In this section, it has been described how to use a IMU sensor to make a bigger,
more nuanced model. The modified model is a constant acceleration model where
the acceleration is added to the state vector. The measurement operator has also
been modified such that it also maps the modelled acceleration and orientation to the
measurement space.



110



Bibliography
[Aan15] Henrik Aanæs. Lecture Notes on Computer Vision. DTU informatics,

2015.
[Bac17] Jen Bacher. LENS DISTORTION: WHAT EVERY PHOTOGRAPHER

SHOULD KNOW. 2017. url: https://clickitupanotch.com/lens-distortion/.
[BS05] M. Bryson and S. Sukkarieh. “Bearing-only SLAM for an airborne vehicle.”

In: In Australian Conference on Robotics and Automation (2005).
[CD08] Margarita Chli and Andrew J. Davison. “Active Matching”. In: Imperial

College London, London SW7 2AZ, UK (2008).
[Civ+10] Javier Civera et al. “1-Point RANSAC for EKF FIltering. Application

to Real-Time Structure from Motion and Visual Odometry.” In: IEEE
Transactions On Robotics (2010).

[Cor] Inc. Corvallis Microtechnology. Introduction to GPS. (Accessed on 01/05/2018).
url: http://www.cmtinc.com/gpsbook/index.htm#top.

[Cyr17] Giorgio Grisetti Cyrill Stachniss Udo Frese. OpenSLAM.org. 2017. url:
https://openslam.org.

[Dav+04] Andrew J. Davison et al. “Real-Time 3d SLAM with Wide-Angle Vision”.
In: IFAC Proceedings Volumes, vol. 37, no. 8 (2004).

[Dav03] Andrew Davison. “Real-time simultaneous localization and mapping with
a single camera”. In: Proc. International Conference on Computer Vision
(2003).

[EL98] Martin Koch Erik D. Dam and Martin Lillholm. “Quaternions, Interpola-
tion, and Animation”. In: (1998).

[Goo] Google. Matematiktorvet – Google Maps. (Accessed on 01/05/2018).
[JD06] Javier Civera J.M.M.Montiel and Andrew J. Davison. “Unified Inverse

Depth Parametrization for Monocular SLAM”. In: Robotics: Science and
Systems (2006).

[JM08] Andrew J. Davison Javier Civera and J.M.M Montiel. “Inverse Depth
Parametrization for Monocular SLAM”. In: IEEE Transactions On Robotics
(2008).

[Mad07] Henrik Madsen. Time Series Analysis. Chapman and Hall, 2007.

https://clickitupanotch.com/lens-distortion/
http://www.cmtinc.com/gpsbook/index.htm#top
https://openslam.org


112 Bibliography

[Mat17] Mathworks. Mathworks.com. 2017. url: https://www.mathworks.com/
help/matlab/ref/math_sphcart.png.

[Nis04] D. Nistér. “An effucuent solution to the five-point relative pose problem”.
In: IEEE Transactions On Pattern Analysis and Machine Intelligence
(2004).

[RD05] Edward Rosten and Tom Drummond. “Fusing Points and Lines for High
Performance Tracking”. In: (2005).

[Ros+08] Edward Rosten et al. “Faster and better: a machine learning approach to
corner detection”. In: (2008).

[Tob17] Tobii. Tobii Pro Glasses 2. 2017. url: https : / / www . tobiipro . com /
imagevault/publishedmedia/gw66xob79wkirj0720oh/TobiiPro-Glasses2-
tech-specs-image-3_1.jpg.

[Vis17] Deepak Geetha Viswanathan. Features from Accelerated Segment Test
(FAST). 2017. url: http : / / homepages . inf . ed . ac . uk / rbf / CVonline /
LOCAL _ COPIES / AV1011 / AV1FeaturefromAcceleratedSegmentTest .
pdf.

[Wul17] Andreas Wulff-Jensen. “Data Conversion Tool For Tobii Pro Glasses 2
Live Data Files”. In: (2017).

https://www.mathworks.com/help/matlab/ref/math_sphcart.png
https://www.mathworks.com/help/matlab/ref/math_sphcart.png
https://www.tobiipro.com/imagevault/publishedmedia/gw66xob79wkirj0720oh/TobiiPro-Glasses2-tech-specs-image-3_1.jpg
https://www.tobiipro.com/imagevault/publishedmedia/gw66xob79wkirj0720oh/TobiiPro-Glasses2-tech-specs-image-3_1.jpg
https://www.tobiipro.com/imagevault/publishedmedia/gw66xob79wkirj0720oh/TobiiPro-Glasses2-tech-specs-image-3_1.jpg
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/AV1FeaturefromAcceleratedSegmentTest.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/AV1FeaturefromAcceleratedSegmentTest.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/AV1FeaturefromAcceleratedSegmentTest.pdf

	Abstract
	Resumé
	Preface
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Prerequisites
	1.4 Notation

	2 Background
	2.1 Hardware
	2.2 Software Selection
	2.3 Related work

	3 Theory
	3.1 Camera Geometry
	3.2 Inverse Depth Parametrization
	3.3 Quaternions
	3.4 State Space Representation
	3.5 The Extended Kalman Filter
	3.6 Measurement operator
	3.7 Feature Detector
	3.8 Feature Matching
	3.9 Robust Estimation Methods

	4 Experimental Design
	4.1 Experiments & Considerations
	4.2 Simulated data

	5 Implementation
	5.1 Software
	5.2 Camera calibration
	5.3 Scale Comparison
	5.4 Thresholds for the Feature Extraction
	5.5 Validation of implementation

	6 Results & Discussion
	6.1 Wearing the Tobii Pro Glasses 2
	6.2 The importance of a good prior
	6.3 Finding a good prior depth
	6.4 Investigation of thresholds for Active Search
	6.5 Robustness of matching
	6.6 Increased distances

	7 Future work
	8 Conclusion
	A Comparison of 34 open-source SLAM implementations
	B Extended comments & remarks
	B.1 Basis of the calculated error functions
	B.2 Inverse Gaussian distribution
	B.3 Spherical to Cartesian Coordinates

	C Linearizing the transition operator
	D Links for experiments
	E Software Manual
	E.1 Getting started
	E.2 Overview of the software

	F Sensor Fusion
	F.1 Extracting gyroscope & accelerometer data
	F.2 Incorporating the gyroscope
	F.3 Incorporating the gyroscope & accelerometer

	Bibliography

